i believe the answer is D, please lmk if it is incorrect!
The correct answer is Sulfur (S).
Sulfur has 6 valence electrons because it is located in Group 16 (or the sixth group over if you don’t count the transition metals). This means that one atom of sulfur has 6 electrons in its outermost shell out of 8 total “spots”, which you can count by counting the group numbers (excluding the transition metals) from Group 1 (with one valence electron) to Group 18 (the noble gases with full valence or outer shells).
By this same logic, Carbon (C) has 4 valence electrons and Cesium (Cs) has 1 valence electron, so neither of these is the correct answer.
Hope this helps!
Answer:
Renewable resources include biomass energy (such as ethanol), hydropower, geothermal power, wind energy, and solar energy. Biomass refers to organic material from plants or animals. This includes wood, sewage, and ethanol (which comes from corn or other plants).
five examples of renewable resources
Solar energy.
Wind energy.
Geothermal energy.
Hydropower.
Bioenergy.
I hope it help you
Original molarity was 1.7 moles of NaCl
Final molarity was 0.36 moles of NaCl
Given Information:
Original (concentrated) solution: 25 g NaCl in a 250 mL solution, solve for molarity
Final (diluted) solution: More water is added to make the new total volume 1.2 liters, solve for the new molarity
1. Solve for the molarity of the original (concentrated) solution.
Molarity (M) = moles of solute (mol) / liters of solution (L)
Convert the given information to the appropriate units before plugging in and solving for molarity.
Molarity (M) = 0.43 mol NaCl solute / 0.250 L solution = 1.7 M NaCl (original solution)
2. Solve for the molarity of the final (diluted) solution.
Remember that the amount of solute remains constant in a dilution problem; it is just the total volume of the solution that changes due to the addition of solvent.
Molarity (M) = 0.43 mol NaCl solute / 1.2 L solution
Molarity (M) of the final solution = 0.36 M NaCl
I hope this helped:))
Mass of the water is 2.63 g.
<u>Explanation:</u>
Mass of the water, m = ? g
Temperature, ΔT = 15 °C
Heat absorbed, q = 165 J
Specific heat capacity, c = 4.18 J / g °C
q = m × c × ΔT
Now, we have to find the mass of the water by rewriting the above equation as,
m = 
Now Plugin the above values in the equation as,
m =
= 2.63 g
So the mass of the water is found as 2.63 g.