Complete Question
A flat loop of wire consisting of a single turn of cross-sectional area 8.00 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 1.60 T in 0.99 s. What is the resulting induced current if the loop has a resistance of 
Answer:
The current is
Explanation:
From the question we are told that
The area is
The initial magnetic field at
is 
The magnetic field at
is 
The resistance is 
Generally the induced emf is mathematically represented as

=> 
=> 
Generally the current induced is mathematically represented as

=>
=>
D. White is a reflectiom of all colors
Answer:
12.31 m/s
Explanation:
If we recall from the previous knowledge we had about speed,
we will know that:
speed = distance/ time.
As such:
The average speed of the rider bicycle is
average speed = total distance/ total time
Mathematically, it can be computed as:





Answer: R = 394.36ohm
Explanation: In a LR circuit, voltage for a resistor in function of time is given by:

ε is emf
L is indutance of inductor
R is resistance of resistor
After 4s, emf = 0.8*19, so:





R = 394.36
In this LR circuit, the resistance of the resistor is 394.36ohms.
Answer:
If the starting GPE is doubled than it's KE would also double.