Answer:
v = 1.08 m/s
Explanation:
What is the linear speed of the 0.0500-kg sphere as its passes through its lowest point?
The decrease in PE is
d = 80.0cm * 1 / 1000m = 0.80m
h = 0.80 m /2 = 0.40 m
ΔPE = m*g*h
ΔPE = (0.0500 - 0.0200)kg * 9.8m/s² * 0.400 m
ΔPE = 0.1176 J
The moment of inertia of the assembly is
I = 1/12*m*L² + (m1 + m2)*(L/2)²
I = 1/12*0.390kg*(0.800m)² + 0.0700kg*(0.400m)²
I = 0.032 kg·m²
KE = ½Iω²
0.1176 J = ½ * 0.032kg·m² * ω²
ω = 2.71 rad/s
v = ωr = 2.71 rad/s * 0.400m
The linear velocity
v = 1.08 m/s
Answer:
1.0 x 10-14.
Explanation:
We then replace the term on the right side of this equation with a constant known as the water dissociation equilibrium constant, Kw. In pure water, at 25C, the [H3O+] and [OH-] ion concentrations are 1.0 x 10-7 M. The value of Kw at 25C is therefore
A elephant kicks a 5.0\,\text {kg}5.0kg5, point, 0, start text, k, g, end text stone with 150\,\text J150J150, start text, J, en
S_A_V [24]
The speed of the stone is 7.7 m/s
Explanation:
The kinetic energy of a body is the energy possessed by the body due to its motion. Mathematically,

where
m is the mass of the body
v is its speed
For the stone in this problem, we have:
K = 150 J is its kinetic energy
m = 5.0 kg is its mass
Re-arranging the equation for v, we find the speed of the stone:

Learn more about kinetic energy:
brainly.com/question/6536722
#LearnwithBrainly