1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rasek [7]
3 years ago
12

A colored ball was drawn out of a bag with replacement. What is

Mathematics
2 answers:
Tresset [83]3 years ago
5 0

Answer:

a

.Step-by-step explanation:

ivann1987 [24]3 years ago
4 0
There is a 1/3 chance. Hope I helped
You might be interested in
Sin(2x+30°)=1 <br> Tìm x <br> Cảm ơn vì giúp đỡ
Pie

Answer:

Step-by-step explanation:

This question is asking us to find where sin(2x + 30) has a sin of 1. If you look at the unit circle, 90 degrees has a sin of 1. Mathematically, it will be solved like this (begin by taking the inverse sin of both sides):

sin^{-1}[sin(2x+30)]=sin^{-1}(1)

On the left, the inverse sin "undoes" or cancels the sin, leaving us with

2x + 30 = sin⁻¹(1)

The right side is asking us what angle has a sin of 1, which is 90. Sub that into the right side:

2x + 30 = 90 and

2x = 60 so

x = 30

You're welcome!

4 0
3 years ago
Which expression is equivalent to StartFraction (3 m Superscript negative 2 Baseline n) Superscript negative 3 Baseline Over 6 m
Dovator [93]

Option a: \frac{m^{5} }{162n} is the equivalent expression.

Explanation:

The expression is \frac{(3m^{-2} n)^{-3}}{6mn^{-2} } where m\neq 0, n\neq 0

Let us simplify the expression, to determine which expression is equivalent from the four options.

Multiplying the powers, we get,

\frac{3^{-3}m^{6} n^{-3}}{6mn^{-2} }

Cancelling the like terms, we have,

\frac{3^{-3}m^{5} n^{-1}}{6 }

This equation can also be written as,

\frac{m^{5}}{3^{3}6 n^{1} }

Multiplying the terms in denominator, we have,

\frac{m^{5} }{162n}

Thus, the expression which is equivalent to \frac{(3m^{-2} n)^{-3}}{6mn^{-2} } is \frac{m^{5} }{162n}

Hence, Option a is the correct answer.

8 0
3 years ago
Read 2 more answers
What is the solution to the inequality below x^2&gt;81
dem82 [27]

Answer:

x>9

Step-by-step explanation:

4 0
4 years ago
Let the sample space represent all the values from 1 to 10. Let A = {1, 2, 8} and B = {2, 7}. What is the P ( A ∪ B ) ? (Express
Aneli [31]

Let A = {1, 2, 8} and B = {2, 7}.

P ( A ∪ B ) = {1, 2, 7, 8}

= 4/10

= 0.4

Answer: 0.4

5 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • Which value of x satisfies both -9x+4y=8 and -3y-y=4
    8·1 answer
  • Zack works at a carwash and can either do interior carpet cleaning
    7·1 answer
  • Question part points submissions used a farmer wants to fence an area of 24 million square feet in a rectangular field and then
    14·1 answer
  • Jessie spent $10 on 3 hair accessories. Which point represents this relationship?
    9·2 answers
  • What is more ways to solve this problem. 3• + (-5)=19
    15·1 answer
  • I need help asap! due tomorrow and am clueless!!
    6·1 answer
  • 13 1/10-7 9/10<br><br> i need help
    9·2 answers
  • Do reflections have the same orientation? In other words, if a shape is reflected, do both figures still have the same orientati
    8·1 answer
  • In the figure below, ZYZA and ZYZX are right angles, _XYZ and ZAYZ are
    9·1 answer
  • 2/4 = 1/2 or 1/3 <br> which is the answer
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!