Answer:
a^2+b^2=c^2 look below
Step-by-step explanation:
Count the squares so
3^2+4^2=5^2
3*3=9
4*4=16
5*5=25
9+16=25 and it does check out
this should help if u need more explanation ill be more then happy to explain to you
Answer:
slope = 3
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Given
9x - 3y = - 54 ( subtract 9x from both sides )
- 3y = - 9x - 54 ( divide all terms by 0 3 )
y = 3x + 18 ← in slope- intercept form
with slope m = 3
Parallel lines have equal slopes, thus
slope of parallel line is 3
<h3>
Answer: -13</h3>
=======================================
Explanation:
g(-3) = 2 means x = -3 and y = 2 pair up together to form the point (-3,2)
g(1) = -4 means we have the point (1,-4)
Find the slope of the line through the two points (-3,2) and (1,-4)
m = (y2-y1)/(x2-x1)
m = (-4-2)/(1-(-3))
m = (-4-2)/(1+3)
m = -6/4
m = -3/2
m = -1.5
The general slope intercept form y = mx+b turns into y = -1.5x+b after replacing m with -1.5
Plug in (x,y) = (-3,2) which is one of the points mentioned earlier and we end up with this new equation: 2 = -1.5*(-3) + b
Let's solve for b
2 = -1.5*(-3)+b
2 = 4.5 + b
2-4.5 = 4.5+b-4.5 .... subtract 4.5 from both sides
-2.5 = b
b = -2.5
Therefore, y = mx+b becomes y = -1.5x-2.5 meaning the g(x) function is g(x) = -1.5x-2.5
The last step is to plug in x = 7 and compute
g(x) = -1.5*x - 2.5
g(7) = -1.5*7 - 2.5
g(7) = -10.5 - 2.5
g(7) = -13
Answer:
be the second player, and always leave a multiple of 3 balloons
Step-by-step explanation:
In order to win, a player must force the other player to leave one or two balloons. To do that, the winning player must leave one more balloon than the maximum number that can be popped. That is, the winner will be the player who leaves 3 balloons,
Working backward, we find that the winner must leave a multiple of 3 after each turn. Since the starting number is a multiple of 3, the first player must lose if the second player plays optimally.
The winning strategy is ...
- be the second player
- always leave a multiple of 3 balloons.