Answer:
Kelvin
Explanation:
Kelvin is the universal and scientific unit for temperature as Celsius and Fahrenheit temperatures we use in everyday situations
Answer:0.153 Hz
Explanation: The relation between Time Period(T) and frequency(f) is given by T=1/f
Plug in the values and u arrive at the answer
Answer:
Δx = 1.2 m
Explanation:
The CHANGE of spring length) (Δx) can be found using PS = ½kΔx²
Δx = √(2PS/k) = √(2(450)/650) = 1.17669... ≈ 1.2 m
The actual length of the spring is unknown as it varies with material type, construction method, extension or compression, and other variables we have no clue about.
1750 meters.
First, determine how long it takes for the kit to hit the ground. Distance over constant acceleration is:
d = 1/2 A T^2
where
d = distance
A = acceleration
T = time
Solving for T, gives
d = 1/2 A T^2
2d = A T^2
2d/A = T^2
sqrt(2d/A) = T
Substitute the known values and calculate.
sqrt(2d/A) = T
sqrt(2* 1500m / 9.8 m/s^2) = T
sqrt(3000m / 9.8 m/s^2) = T
sqrt(306.122449 s^2) = T
17.49635531 s = T
Rounding to 4 significant figures gives 17.50 seconds. Since it will take
17.50 seconds for the kit to hit the ground, the kit needs to be dropped 17.50
seconds before the plane goes overhead. So just simply multiply by the velocity.
17.50 s * 100 m/s = 1750 m
Doing a force balance on the car:
ma = Fr
ma = μmg
a = μg
a = 0.3(9.81)
a = 29.43 m/s2
Using the formula:
2ax = v2
2(29.43)(34) = v2
v = 44.74 m/s = 161.05 km/h
The car was going 44.74 m/s or 161.05 kph when the brakes were applied.