We will use the expression for freezing point depression ∆Tf
∆Tf = i Kf m
Since we know that the freezing point of water is 0 degree Celsius, temperature change ∆Tf is
∆Tf = 0C - (-3°C) = 3°C
and the van't Hoff Factor i is approximately equal to 2 since one molecule of KCl in aqueous solution will produce one K+ ion and one Cl- ion:
KCl → K+ + Cl-
Therefore, the molality m of the solution can be calculated as
3 = 2 * 1.86 * m
m = 3 / (2 * 1.86)
m = 0.80 molal
Explanation:
When an atom has an equal number of electrons and protons, it has an equal number of negative electric charges (the electrons) and positive electric charges (the protons). The total electric charge of the atom is therefore zero and the atom is said to be neutral. ... Chemically, we say that the atoms have formed bonds.
Easy peasy! All we need to do is plug this formula into our calculator:
-log(M)
So, we'd plug in -log(.2), which is 0.7 :)
The coefficient for hydrogen in the balanced equation of solid molybdenum(iV) oxide with gaseous hydrogen is 2
Explanation
Coefficient is defined to as a number in front of a chemical formula in a balanced chemical equation.
The reaction of molybdenum (iv) oxide with gaseous hydrogen is as below,
MoO2 + 2 H2→ Mo +2 H2O
From balanced equation above the coefficient for H2 is 2 since the number in front of H2 is 2