<span>Divide the number of grams present in the sample by copper's gram atomic weight to find the number of gram atomic weights present. Then multiply that result by Avogadro's Number: 6.022137 x 10^23 atoms/gram atomic weight.1,200 g/(63.54 g/gram atomic weight) ? 18.885741 gram-atomic weights. Hope this helps. </span>
I think is 1 and a half km
To find the chemical formula of an ionic compound, the first step is to find the charge of the 2 ions. As given already, the charge of sodium ion is 1+, and carbonate ion has a charge of 2-. We can picture it like that: Sodium ion loses 1 electron and carbonate ion gains 2.
The next step is to find how the 2 ions can lose and gain electrons equally. In this case, since each Na ion only loses 1 electron, it cannot satisfy the need of one carbonate ion, since they need 2, not 1. Therefore, 2 Na ions can cover the need of one carbonate ion. So, the ratio of Na to CO3 ion should be 2:1.
Now just combine the 2 ions, positive one at the front, which makes it NaCO3, make sure you do not add the charge and notice that CO3 is a molecule itself so do not remove the 3. Now because the ratio is 2:1, so the final formula is Na2CO3, no need to add 1 if the ratio is 1.
Your answer should be Na2CO3.
The balanced chemical reaction is written as:
<span>NaOH + HCl → NaCl + H2O
We are given the amount of sodium hydroxide to be used up in the reaction. This will be the starting point for the calculation.
2.75 x 10^-4 mol NaOH ( 1 mol H2O / 1 mol NaOH ) ( 18.02 g H2O / 1 mol H2O ) = 4.96 x 10^-3 g H2O</span>