Chlorophyll pigment found in chloroplast of leaves absorbs sunlight.
The plants has a technique in which they lean towards sunlight which helps them better to compete for sunlight.
Explanation:
The leaves of the plant consist of chloroplasts in which light absorbing pigment chlorophyll is found. The chloroplast consist of thylakoid where light reaction of photosynthesis takes place.
The presence of chlorophyll a in large amount would help plant better use the sunlight this amounts to increase number of chloroplast.
Leaning towards the sunlight is feature which helps them using more sunlight.
The answer is A: Areas where the geologic process occurred now have major petroleum reserves
Answer:
Explanation:
THE PHOTOCHEMICAL(LIGHT) REACTIONS :This is a phase of photosynthesis where sunlight is used as a source of energy to manufacture two chemical compounds which are "Reduced nicotinamide adenine dinucleotide phosphate"-NADPH and "Adenosine triphosphate"-ATP.This phase of photosynthesis involves 4 steps or reactions which are :
STEP 1 : Activation or Energization of chlorophyll - In this reaction,chlorophyll molecules in green algae or plants absorb sunlight and become activated,that is the electrons of the chlorophyll molecule acquire solar energy and become excited.
STEP 2 : PHOTOLYSIS OF WATER - Here the energy absorbed by the chlorophyll molecules are used to split water molecules into H+ ions and OH-- ions.
STEP 3:Formation of NADPH -The hydrogen ions (H+) produced reacts with an NADP ( an electron carrier in the chlorophyll) to form NADPH.
STEP 4: FORMATION OF ATP - The high energy generated from the electron transfer process or chain is used to add a phosphate group to ADP (Adenosine dphosphate) to form ATP.
DARK PHASE :In this phase of photosynthesis,the NADPH generated in the light phase is used as a reducing equivalent to reduce CO2 to form Glucose (food) using the ATP generated as a source of energy.
Answer:
The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.
Explanation:
Thermodynamic work is called the transfer of energy between the system and the environment by methods that do not depend on the difference in temperatures between the two. When a system is compressed or expanded, a thermodynamic work is produced which is called pressure-volume work (p - v).
The pressure-volume work done by a system that compresses or expands at constant pressure is given by the expression:
W system= -p*∆V
Where:
- W system: Work exchanged by the system with the environment. Its unit of measure in the International System is the joule (J)
- p: Pressure. Its unit of measurement in the International System is the pascal (Pa)
- ∆V: Volume variation (∆V = Vf - Vi). Its unit of measurement in the International System is cubic meter (m³)
In this case:
- p= 10 atm= 1.013*10⁶ Pa (being 1 atm= 101325 Pa)
- ΔV= 2 L- 20 L= -18 L= -0.018 m³ (being 1 L=0.001 m³)
Replacing:
W system= -1.013*10⁶ Pa* (-0.018 m³)
Solving:
W system= 18234 J
<u><em>The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.</em></u>