1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
3 years ago
7

24. A anvil with a mass of 60 kg falls from a height of 9.5 m. How fast is it going right

Physics
1 answer:
shepuryov [24]3 years ago
6 0

So they give us this

V=IR

V= 1.8

I=0.4

R=?

So we insert the thing that we know.

1.8=0.4*R

We need to leave our unknown value alone. So if our value of 0.4 is multiplying the unknown value it passes to the other side dividing.

So we have this.

Lastly we solve.

R=4.5ohms

The formula to find R is V=IR

V/I=R

So the resistance will be the Voltage divided by the Current

You might be interested in
What quantity does the Hamiltonian correspond to? Rest mass Potential energy Total energy Kinetic energy Bohr frequency Lagrangi
PSYCHO15rus [73]

Answer:

The correct option is: Total energy

Explanation:

The Hamiltonian operator, in quantum mechanics, is an operator that is associated with the<u> total energy of the system.</u> It is equal to the sum of the total kinetic energy and the potential energy of all the particles of the system.

The Hamiltonian operator was named after the Irish mathematician, William Rowan Hamiltonis denoted and is denoted by H.

3 0
3 years ago
For this discussion, you will work in groups to answer the questions. In a video game, airplanes move from left to right along t
Mariulka [41]

Answer:

When fired from (1,3) the rocket will hit the target at (4,0)

When fired from (2, 2.5) the rocket will hit the target at (12,0)

When fired from (2.5, 2.4) the rocket will hit the target at (\frac{35}{2},0)

When fired from (4,2.25) the rocket will hit the target at (40,0)

Explanation:

All of the parts of the problem are solved in the same way, so let's start with the first point (1,3).

Let's assume that the rocket's trajectory will be a straight line, so what we need to do here is to find the equation of the line tangent to the trajectory of the airplane and then find the x-intercept of such a line.

In order to find the line tangent to the graph of the trajectory of the airplane, we need to start by finding the derivative of such a function:

y=2+\frac{1}{x}

y=2+x^{-1}

y'=-x^{-2}

y'=-\frac{1}{x^{2}}

so, we can substitute the x-value of the given point into the derivative, in this case x=1, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(1)^{2}}

m=y'=-1

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-3=-1(x-1})

y-3=-1x+1

y=-x+1+3

y=-x+4

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-x+4=0

and solve for x

x=4

so, when fired from (1,3) the rocket will hit the target at (4,0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (2, 2.5)

so, we can substitute the x-value of the given point into the derivative, in this case x=2, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(2)^{2}}

m=y'=-\frac{1}{4}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.5=-\frac{1}{4}(x-2})

y-2.5=-\frac{1}{4}x+\frac{1}{2}

y=-\frac{1}{4}x+\frac{1}{2}+\frac{5}{2}

y=-\frac{1}{4}x+3

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{1}{4}x+3=0

and solve for x

x=12

so, when fired from (2, 2.5) the rocket will hit the target at (12,0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (2.5, 2.4)

so, we can substitute the x-value of the given point into the derivative, in this case x=2.5, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(2.5)^{2}}

m=y'=-\frac{4}{25}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.4=-\frac{4}{25}(x-2.5})

y-2.4=-\frac{4}{25}x+\frac{2}{5}

y=-\frac{4}{25}x+\frac{2}{5}+2.4

y=-\frac{4}{25}x+\frac{14}{5}

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{4}{25}x+\frac{14}{5}=0

and solve for x

x=\frac{35}{20}

so, when fired from (2.5, 2.4) the rocket will hit the target at (\frac{35}{2},0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (4, 2.25)

so, we can substitute the x-value of the given point into the derivative, in this case x=4, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(4)^{2}}

m=y'=-\frac{1}{16}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.25=-\frac{1}{16}(x-4})

y-2.25=-\frac{1}{16}x+\frac{1}{4}

y=-\frac{1}{16}x+\frac{1}{4}+2.25

y=-\frac{1}{16}x+\frac{5}{2}

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{1}{16}x+\frac{5}{2}=0

and solve for x

x=40

so, when fired from (4,2.25) the rocket will hit the target at (40,0)

I uploaded a graph that represents each case.

8 0
3 years ago
What is the Force in Newtons exerted by cart with a mass of 0.75 kg and an Acceleration of 6m/s2?
denis-greek [22]

Answer:

<h2>4.5 N</h2>

Explanation:

The force acting on an object given it's mass and acceleration can be found by using the formula

force = mass × acceleration

From the question we have

force = 0.75 × 6 = 4.5

We have the final answer as

<h3>4.5 N</h3>

Hope this helps you

6 0
2 years ago
How do the Sun, Earth, and Moon systems interact
Nataly [62]

The sun is the mother star of the solar system, which only emits light to half of the planet, while the other part is always dark.

The sun emits light towards the earth, which dominates all life on earth. The movements of the Moon around the Earth and of the Earth around the Sun are complex. Movements of rotation around their own axes are superimposed on movements of orbital translation. The Earth and the Moon rotate around their own axes: This is rotation.

8 0
2 years ago
car 1 drives 45 mph to the west and car 2 drives 30mph to the east . from the frame of reference of car 1, what is the velocity
Naya [18.7K]
Distance between the two cars is increasing at the rate of 85 mph. 

A passenger in Car-1 says that he is at rest in his own frame of reference,
and Car-2 is moving away from him at 85 mph, toward the west.


6 0
3 years ago
Read 2 more answers
Other questions:
  • Tres litros de oxigeno gaseoso a 15 grados centígrados y a presión atmosférica (1atm), se lleva a una presión de 10mm de Hg. ¿ c
    13·1 answer
  • If the speed of light in air is 3.00 times 10 to the 8 m/s power and the speed of light in water is 2.25 times 10 to the 8 power
    13·1 answer
  • How does earths atmispher help it to sustain life
    7·1 answer
  • Distant galaxies appear to be much larger than those nearby. true or false
    13·1 answer
  • Calculate the average maximum height for all three trials When the speed of the bottle is 2 m/s, the average
    9·2 answers
  • How does 10 organ systems contributes your arrival?
    12·1 answer
  • A 500 kg satellite experiences a gravitational force of 3000 N, while moving in a circular orbit around the earth. Determine the
    9·1 answer
  • An 85 kg man stands in a very strong wind moving at 15 m/s at torso height. As you know, he will need to lean in to the wind, an
    14·1 answer
  • Directions: Consider a 2-kg
    11·1 answer
  • According to einstein's theory of simple relativity (_E + mc(2)_). BLANK is converted into BLANK.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!