Answer:
A) s = 796.38 m
B) t = 12.742 s
C) T = 25.484 s
Explanation:
A) First of all let's find the time it takes to get to maximum height using Newton's first equation of motion.
v = u + gt
u = 125 m/s
v = 0 m/s
g = 9.81 m/s²
Thus;
0 = 125 - 9.81(t)
g is negative because motion is against gravity. Thus;
9.81t = 125
t = 125/9.81
t = 12.742 s
Max height will be gotten from Newton's 2nd equation of motion;
s = ut + ½gt²
s = (125 × 12.742) + (½ × -9.81 × 12.742²)
s = 1592.75 - 796.37
s = 796.38 m
B) time to reach maximum height is;
t = u/g
t = 125/9.81
t = 12.742 s
C) Total time elapsed is;
T = 2u/g
T = 2 × 125/9.81
T = 25.484 s
26) A) 400J as GPE = mgh
27) C) Both obj has same PE
28) B) It decreases as energy is not being provided.
29) C) (42 - 0)/7 = 6m/s2
The key formula ===> Voltage = (current) x (resistance)
Plug in the numbers given ===> Voltage = (3.6 A) x (5.0 ohms)
Dooda multiplication ===> Voltage = 18 volts
An oval is around Earth that points toward and away from the moon to show the tidal bulges. The gravitational pull of the sun and moon combined create larger than normal tides. The gravitational pull of the sun reduces the moon's gravitational pull to create moderate tides.
Answer:
The electric field between the plates is 120 V/m.
(c) is correct option.
Explanation:
Given that,
Potential difference = 12 volt
Distance = 10 cm = 0.1 m
We need to calculate the electric field between the plates
Using formula of electric field

Where, V = potential difference
d = distance between the plates
Put the formula


Hence, The electric field between the plates is 120 V/m.