1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
2 years ago
7

24. A anvil with a mass of 60 kg falls from a height of 9.5 m. How fast is it going right

Physics
1 answer:
shepuryov [24]2 years ago
6 0

So they give us this

V=IR

V= 1.8

I=0.4

R=?

So we insert the thing that we know.

1.8=0.4*R

We need to leave our unknown value alone. So if our value of 0.4 is multiplying the unknown value it passes to the other side dividing.

So we have this.

Lastly we solve.

R=4.5ohms

The formula to find R is V=IR

V/I=R

So the resistance will be the Voltage divided by the Current

You might be interested in
Canola oil is less dense than water, so it floats on water, but its index of refraction is 1.47, higher than that of water. When
kupik [55]

Answer:

therefore critical angle c= 69.79°

Explanation:

Canola oil is less dense than water, so it floats over water.

Given n_{canola}= 1.47

which is higher than that of water

refractive index of water n_{water}=1.33

to calculate critical angle of light going from the oil into water

we know that

sinc= \frac{n_{water}}{n_{canola}}

now putting values we get

sinc= \frac{1.33}{1.47}

c= sin^{-1}(\frac{1.33}{1.47} )

c=69.79°

therefore critical angle c= 69.79°

8 0
3 years ago
Object A is 71 degrees and object B is 75 degrees how will thermal energy flow
Tasya [4]

Given :

Object A is 71 degrees and object B is 75 degrees .

To Find :

How will thermal energy flow.

Solution :

We know, by law of thermodynamics thermal energy will flow from higher temperature to lower temperature.

So, in the given question energy will flow from object B from object A.

Hence, this is the required solution.

3 0
2 years ago
A 9 volt battery produces a current of 0.2A. What is the resistance?
nekit [7.7K]
9/0.2 would be the ans
4 0
3 years ago
Define Archemedics principle?​
azamat

Answer:

Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse.

6 0
3 years ago
An infinite line of charge with linear density λ1 = 8.2 μC/m is positioned along the axis of a thick insulating shell of inner r
bixtya [17]

1) Linear charge density of the shell:  -2.6\mu C/m

2)  x-component of the electric field at r = 8.7 cm: 1.16\cdot 10^6 N/C outward

3)  y-component of the electric field at r =8.7 cm: 0

4)  x-component of the electric field at r = 1.15 cm: 1.28\cdot 10^7 N/C outward

5) y-component of the electric field at r = 1.15 cm: 0

Explanation:

1)

The linear charge density of the cylindrical insulating shell can be found  by using

\lambda_2 = \rho A

where

\rho = -567\mu C/m^3 is charge volumetric density

A is the area of the cylindrical shell, which can be written as

A=\pi(b^2-a^2)

where

b=4.7 cm=0.047 m is the outer radius

a=2.7 cm=0.027 m is the inner radius

Therefore, we have :

\lambda_2=\rho \pi (b^2-a^2)=(-567)\pi(0.047^2-0.027^2)=-2.6\mu C/m

 

2)

Here we want to find the x-component of the electric field at a point at a distance of 8.7 cm from the central axis.

The electric field outside the shell is the superposition of the fields produced by the line of charge and the field produced by the shell:

E=E_1+E_2

where:

E_1=\frac{\lambda_1}{2\pi r \epsilon_0}

where

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 8.7 cm = 0.087 m is the distance from the axis

And this field points radially outward, since the charge is positive .

And

E_2=\frac{\lambda_2}{2\pi r \epsilon_0}

where

\lambda_2=-2.6\mu C/m = -2.6\cdot 10^{-6} C/m

And this field points radially inward, because the charge is negative.

Therefore, the net field is

E=\frac{\lambda_1}{2\pi \epsilon_0 r}+\frac{\lambda_2}{2\pi \epsilon_0r}=\frac{1}{2\pi \epsilon_0 r}(\lambda_1 - \lambda_2)=\frac{1}{2\pi (8.85\cdot 10^{-12})(0.087)}(8.2\cdot 10^{-6}-2.6\cdot 10^{-6})=1.16\cdot 10^6 N/C

in the outward direction.

3)

To find the net electric field along the y-direction, we have to sum the y-component of the electric field of the wire and of the shell.

However, we notice that since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, this means that the net field produced by the wire along the y-direction is zero at any point.

We can apply the same argument to the cylindrical shell (which is also infinite), and therefore we find that also the field generated by the cylindrical shell has no component along the y-direction. Therefore,

E_y=0

4)

Here we want to find the x-component of the electric field at a point at

r = 1.15 cm

from the central axis.

We notice that in this case, the cylindrical shell does not contribute to the electric field at r = 1.15 cm, because the inner radius of the shell is at 2.7 cm from the axis.

Therefore, the electric field at r = 1.15 cm is only given by the electric field produced by the infinite wire:

E=\frac{\lambda_1}{2\pi \epsilon_0 r}

where:

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 1.15 cm = 0.0115 m is the distance from the axis

This field points radially outward, since the charge is positive . Therefore,

E=\frac{8.2\cdot 10^{-6}}{2\pi (8.85\cdot 10^{-12})(0.0115)}=1.28\cdot 10^7 N/C

5)

For this last part we can use the same argument used in part 4): since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, the y-component of the electric field is zero.

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • The blank is the sun's apparent annual path through the
    15·1 answer
  • Two particles A and B start from rest at the origin x = 0 [ft] and move along a straight line such that a = (613) Ift/s) and ag
    8·1 answer
  • You generally need a transformer to operate a doorbell because doorbells are designed to work with much smaller voltages than wh
    10·1 answer
  • Make vector A on the simulation have a magnitude of exactly 10 units. What were the starting points and ending points of your ve
    6·1 answer
  • Shoo the fly flaps its wings back and forth 140 times each second. The frequency of the wing flapping is ____ Hz.
    10·1 answer
  • 4. Which of the following is equivalent to 800 cm?
    8·1 answer
  • Explain where you observe reflection, refraction, and absorption of light in your everyday activities (10 points)
    6·1 answer
  • Ulesr...<br> 4.What makes the molecular shape of Co, and NH, different? (2 points)<br> luence.
    7·1 answer
  • How much force would you need to accelerate a 4 kg object from a standstill to 5 m/s2?
    5·1 answer
  • What will happen if i sleep in class then fail said class?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!