1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
2 years ago
7

24. A anvil with a mass of 60 kg falls from a height of 9.5 m. How fast is it going right

Physics
1 answer:
shepuryov [24]2 years ago
6 0

So they give us this

V=IR

V= 1.8

I=0.4

R=?

So we insert the thing that we know.

1.8=0.4*R

We need to leave our unknown value alone. So if our value of 0.4 is multiplying the unknown value it passes to the other side dividing.

So we have this.

Lastly we solve.

R=4.5ohms

The formula to find R is V=IR

V/I=R

So the resistance will be the Voltage divided by the Current

You might be interested in
Write a numerical expression for the emissive intensity (in W/m^2.sr) coming out of a tiny hole in an enclosure of surface tempe
stiks02 [169]

Answer:

6.0 × 10^{11} W/m^{2}

Explanation:

From Wien's displacement formula;

Q = e AT^{4}

Where: Q is the quantity of heat transferred, e is the emissivity of the surface, A is the area, and T is the temperature.

The emissive intensity = \frac{Q}{A} = eT^{4}

Given from the question that: e = 0.6 and T = 1000K, thus;

emissive intensity = 0.6 × (1000)^{4}

                             = 0.6 × 1.0 × 10^{12}

                             = 6.0 × 10^{11} \frac{W}{m^{2} }

Therefore, the emissive intensity coming out of the surface is 6.0 × 10^{11} W/m^{2}.

3 0
2 years ago
An ac power generator produces 73.37 a (rms) at 4623 v. the voltage is stepped up to 105,033 v by an ideal transformer, and the
evablogger [386]

Step up transformer is a device which is used to step up the voltage which is input with some value.

This is based upon the principle of mutual inductance and in this the voltage input and voltage output is different because of number of turns.

Here if ideal transformer is given then power input and power output of the transformer must be same as there is no power loss in ideal transformer.

So we can write

i_pV_p = i_sV_s

here

i_p = 73.37 A

V_p = 4623 V

V_s = 105033 A

now using above equation we will have

73.37*4623 = 105033*i_s

solving above we will have

i_s = 3.23 A

7 0
2 years ago
Imagine an alternate universe where the value of the Planck constant is . In that universe, which of the following objects would
HACTEHA [7]

Question: The planck constant was not given. In this calculation, planck constant of 6.62607*10^-9 Js  is used for the calculation.

Answer:

(a) A virus -------------Classical

(b) A buckyball -----Classical

(c) A mosquito ------ Quantum

(d) A turtle  ------------Quantum

Explanation:

 Calculating the wavelength using the formula;

λ= h/(mv)

where

λ= Wavelength

h = Planck Constant = 6.62607*10^-9 Js

m = mass in kg

v = velocity in m/s

Virus size = 280. nm = 2.80*10⁻⁷ m

a)

A Virus:

m = 9.4 x 10-17 g 9.4*10⁻²⁰ kg

v = 0.50 µm/s = 5 *10⁻⁷ m/s

h = 6.62607*10^-9 Js

Virus size = 280 nm = 2.80*10⁻⁷ m

Substituting into the formula; we have

λ= h/(mv)

λ= 6.62607*10^-9/ (9.4*10⁻²⁰* 5 *10⁻⁷)

  = 6.62607*10^-9/4.7*10^-26

  = 1.4*10^17 m

Classical : Wavelength is bigger than it's size

(b)

A buckyball

m = 1.2 x 10-21 g = 1.2 *10⁻²⁴ kg

V = 37 m/s

Size = 0.7 nm = 7*10⁻¹⁰ m

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ ( 1.2 *10⁻²⁴* 37)

  =  6.62607*10^-9/4.44*10^-23

  = 1.49 *10^14 m

Classical : Wavelength is bigger than it's size

(c)

A mosquito

Mass = 1.0 mg = 1*10⁻⁶ kg

v = 1.1 m/s

Size =  6.3 mm = 6.3*10⁻³ m

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ (  1*10⁻⁶* 1.1)

  =  6.62607*10^-9/1.1*10^-6

  = 6.02*10^-3 m

Quantum Approach: The wavelength and the size are comparable

(d)

A turtle

Mass = 710. g = 0.71 kg

Size =  22. cm = 0.22 m

V =  2.8 cm/s. = 0.028 m/s

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ (  0.71* 0.028)

  = 6.62607*10^-9/0.01988

   = 3.33*10^-7 m

Quantum Approach: The wavelength and the size are comparable

8 0
3 years ago
A charge of 12 c passes through an electroplating apparatus in 2. 0 min. what is the average current?
Studentka2010 [4]

A charge of 12 c passes through an electroplating apparatus in 2.0 min, then the average current is 0.1 ampere.

<h3>What is an electric charge?</h3>

Charged material experiences a force when it is exposed to an electromagnetic field due to the physical property of electric charge. You can have a positive or negative electric charge.

Electric current is defined as the charge per unit of time.

The mathematical relation between current and the electric charge

I =Q/T

where I is the current flowing

Q is the total electric charge

T is the time period for which the current is flowing

As given in the problem A charge of 12 c passes through an electroplating apparatus in 2.0 min

Let us first convert the time period of minutes into seconds

1 min = 60 seconds

2 min = 2*60 seconds

         =120 seconds

By using the above relation between electric current and electric charge

and by substituting the respective values of the charge and the time period

I =Q/T

I = 12c/120 seconds

I = 0.1 Ampere

Thus, the average current flowing through the apparatus would be 0.1 Ampere.

Learn more about an electric charge from here

brainly.com/question/8163163

#SPJ4

5 0
1 year ago
A circular coil of radius r = 5 cm and resistance R = 0.2 is placed in a uniform magnetic field perpendicular to the plane of th
Yuri [45]

Answer:

the question is incomplete, the complete question is

"A circular coil of radius r = 5 cm and resistance R = 0.2 ? is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e^-t T. What is the magnitude of the current induced in the coil at the time t = 2 s?"

2.6mA

Explanation:

we need to determine the emf induced in the coil and y applying ohm's law we determine the current induced.

using the formula be low,

E=-\frac{d}{dt}(BACOS\alpha )\\

where B is the magnitude of the field and A is the area of the circular coil.

First, let determine the area using \pi r^{2} \\ where r is the radius of 5cm or 0.05m

A=\pi *(0.05)^{2}\\ A=0.00785m^{2}\\

since we no that the angle is at 0^{0}

we determine the magnitude of the magnetic filed

B=0.5e^{-t} \\t=2s

E=-(0.5e^{-2} * 0.00785)

E=-0.000532v\\

the Magnitude of the voltage is 0.000532V

Next we determine the current using ohm's law

V=IR\\R=0.2\\I=\frac{0.000532}{0.2} \\I=0.0026A

I=2.6mA

6 0
3 years ago
Other questions:
  • Which statement best describes the scientists who contributed to our current body of scientific knowledge
    12·1 answer
  • What is a meniscus and what does it do
    11·1 answer
  • If you rub an inflated balloon against your hair and place it against a door, by what mechanism does it stick? explain.
    6·1 answer
  • Gravity is a force. <br> True <br> False
    14·2 answers
  • Vector A has y-component Ay= +15.0 m . A makes an angle of 32.0 counterclockwise from the +y-axis. What is the x component of A?
    7·2 answers
  • Why do sufers like water waves with high amplitudes?
    6·1 answer
  • *science question pls answer quickly*
    5·1 answer
  • A car accelerates from rest, and travels 400 m in 3.5 seconds. If
    9·1 answer
  • Which of ONE of the following four elements has the most metallic properties?
    15·1 answer
  • As shown above an adhesive has been applied to contacting faces of two blocks so that the blocks interact with an adhesive force
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!