Answer:
44.8 m/s
Explanation:
Use the Initial Speed Formula:
InS = 2(d/t) - Final Speed
InS = 2(55/1,25) - 43.2
InS = 2.44 - 43,2
InS = 88 - 43,2
InS = 44.8 m/s
Answer: Friction also prevents an object from starting to move, such as a shoe placed on a ramp. When friction acts between two surfaces that are moving over each other, some kinetic energy is transformed into heat energy. Friction can sometimes be useful.
Explanation:
Answer:
Only 2,3,4 are true
Explanation:
Bosons Particles are particles that condense to the same state. Bosons particle have integral spin like 0 ,
,
,
, etc. Bosons particles always have asymmetric wave function and there is exchange of particles.
1) It does not obey Fermi_ Dirac statistics
2) It obeys Bose-Einstein statistics
3) The object can have intrinsic spin 
4) Yes the Bosons particle is always symmetric with exchange of particles
5) No Bosons particle are symmetric and not asymmetric
Pitch is related to frequency
Answer:
.7917 m/s
Explanation:
This is a conservation of momentum question. You have an object initially at rest (cart) so that object is initially at 0 momentum. Indiana Jones is 83.5 kg and running 3.75 m/s so he starts with a momentum of 313.125 kg * m/s because momentum is equal to mass * velocity. Once the person jumps in the cart, the cart and the person can be considered one object and by conservation of momentum, the momentum of the Indiana-cart system is equal to 313.125 kg * m/s. By that, we can set that momentum equal to the combined mass * joint velocity. So 313.125 = (83.5kg + 312kg) * joint velocity. Then just solve for the velocity. The answer should be smaller than the intial velocity of the person of 3.75 m/s because the mine cart is HUGE at 312kg.