Answer:
The moon Phobos orbits Mars
(mass = 6.42 x 1023 kg) at a distance
of 9.38 x 106 m. What is its period of
orbit?
Explanation:
Answer: 27.9816 x 10^3 is the period of orbit
Answer:
Explanation:
Plotting the original location of the helicopter before it flies 25 km north, it would be at the origin, (0,0) then after it flies north, the y vertex gains 25 points, so it would be (0,25)
After it flies east, the x coordinate gains 5 points, so it would now be (5,25)
After it flies south, the y coordinate loses or is subtracted by 5 points. so it would now be (5,20)
After flying west, the x coordinate loses 15 points. So the final vertex would be at (-10,20)
East = Right
West = Left
South= Down
North = Up
I used mainly mathematical methods by adding and subtracting the x and y coordinate values, but this could be graphed easily since I gave the coordinates just incase!
Hope this helps!
Other countries have reacted the same way as the United States has.
Answer:
The value is 
Explanation:
From the question we are told that
The time taken to travel to the planet from earth is 
The time to be spent on the ship is
Generally speed can be obtained using the mathematical relation represented below

The 2 in the equation show that the trip is a round trip i.e going and coming back
=> 
=> 
If bonds are broken, the energy is released, and if bonds are formed, energy is absorbed. During conversions from chemical energy to thermal energy, the energy stored in the chemical bonds are released and this energy causes surrounding molecules to move faster thus increasing the thermal energy of a substance.