Answer:
0.893mol
Explanation:
n = m ÷ M
= 275 ÷ (23 + 80)
= 2.67 mol
* now use the Mol ratio *
NaBr : FeBr3
6 : 2
2.67 : x
5.67 = 6x
n( FeBr3 ) = 0.893 mol
Answer:
ΔH3 = -110.5 kJ.
Explanation:
Hello!
In this case, by using the Hess Law, we can manipulate the given equation to obtain the combustion of C to CO as shown below:
C(s) + 1/2O2(g) --> CO(g)
Thus, by letting the first reaction to be unchanged:
C(s) + O2(g)--> CO2 (g) ; ΔH1 = -393.5 kJ
And the second one inverted:
CO2(g) --> CO(g) + 1/2O2(g) ; ΔH2= 283.0kJ
If we add them, we obtain:
C(s) + O2(g) + CO2(g) --> CO(g) + CO2 (g) + 1/2O2(g)
Whereas CO2 can be cancelled out and O2 subtracted:
C(s) + 1/2O2(g) --> CO(g)
Therefore, the required enthalpy of reaction is:
ΔH3 = -393.5 kJ + 283.0kJ
ΔH3 = -110.5 kJ
Best regards!
II think thihe answer is to be part of the acid to be honest
Answer:
They are strong intermolecular forces
Explanation:
Covalent forces are very strong intermolecular forces. In fact, we can say they are the strongest. This is because several big and giant molecules have covalent bonds holding their molecules together. A good example of this is the buckministerfullerence molecule which contains carbon atom to the order of 60 carbon atoms. It is a very giant molecule and it is covalent bond that is holding the molecules together
The strongest substance in the world is diamond. It is so strong that no other substance can cut it asides another diamond. As strong as it is, the molecule is held together by very strong intermolecular forces of covalent bonds which confers the strength it has on it