From the ones that you are showing me <span>the more positive the potential the more likely: </span>
<span>Fe+3 + e- ---> Fe+2
I hope this is something very useful</span>
Answer: 1.
moles
2. 90 mg
Explanation:

According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus
moles of ozone is removed by =
moles of sodium iodide.
Thus
moles of sodium iodide are needed to remove
moles of 
2. 
According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus 0.0003 moles of ozone is removed by =
moles of sodium iodide.
Mass of sodium iodide=
(1g=1000mg)
Thus 90 mg of sodium iodide are needed to remove 13.31 mg of
.
Answer:
As the y-intercept increases, the graph of the line shifts up;
As the y-intercept decreases, the graph of the line shifts down
Explanation:
There are two ways to think about this problem. The first way would be the graphical approach:
- if we only change the y-intercept, this means we keep the same slope;
- y-axis is the vertical axis;
- if we change the point at which the line crosses the y-axis, we either shift it upward for a higher y-intercept or downward for a lower y-intercept.
Now, thinking algebraically, a line has the following equation in a general form:

The y-intercept is essentially obtained when x = 0, then:
y = b:
- if we increase b value, the y value increases, so the graph shifts upward;
- if we decrease b value, the y value decreases, so the graph shifts downward.
<span>the balanced equation for the reaction is as follows
Na</span>₂<span>SO</span>₄<span> + BaCl</span>₂<span> ----> 2NaCl + BaSO</span>₄
<span>stoichiometry of Na</span>₂<span>SO</span>₄<span> to BaCl</span>₂<span> is 1:1
first we need to find out which the limiting reactant is
limiting reactant is fully used up in the reaction.
number of Na2So4 moles - 0.5 mol number of BaCl2 moles - 60 g / 208 g/mol = 0.288 mol
since molar ratio is 1:1 equal number of moles of both reactants should react with each other
therefore BaCl2 is the limiting reactant and Na2SO4 is in excess. amount of product formed depends on number of limiting reactant present.
stoichiometry of BaCl</span>₂<span> to BaSO</span>₄<span> is 1:1.
therefore number of BaSO4 moles formed - 0.288 mol</span>