Redox (red for reduction and ox for oxidation)
Use the ideal gas law:
PV = nRT
so, T = PV / nR
n=0.5
V= 120 dm^3 = 120 L (1 dm^3 = 1 L)
R = 1/12
P = 15,000 Pa = 0.147 atm (1 pa = 9.86 10^{-6} )
Put the values:
T = PV / nR
T = (0.147) (120) / (0.5) (1/12)
T= 426 K
The structure is in attachment.
Hexane is alkane (acyclic saturated hydrocarbon, carbon-carbon bonds<span> are </span>single) <span>of six </span>carbon atoms. Methoxy<span> group is the functional group consisting of a methyl group bound to oxygen. Iodo is substituent consists of ionide (element in 17 periodic group).</span>
3. I am not sure what is meant by shape, it could be to do with structure.
4. It is magnesium nitride, as adding nitrogen makes a nitride
Answer:
See below.
Step-by-step explanation:
Ethers react with HI at high temperature to produce an alky halide and an alcohol.
R-OR' + HI ⟶ R-I + H-OR'
<em>Benzylic ethers</em> react by an Sₙ1 mechanism by forming the stable benzyl cation.
- PhCH₂-OR + HI ⟶ PhCH₂-O⁺(H)R + I⁻ Protonation of the ether
- PhCH₂-O⁺(H)R ⟶ PhCH₂⁺ + HOR Sₙ1 ionization of oxonium ion
- PhCH₂⁺ + I⁻ ⟶ PhCH₂-I Nucleophilic attack by I⁻
If there is excess HI, the alcohol formed in Step 2 is also converted to an alkyl iodide:
ROH +HI ⟶ R-I + H-OH
Thus, benzyl ethyl ether reacts to form benzyl iodide (a) and ethanol (b).
The ethanol reacts with excess HI in an Sₙ2 reaction to form ethyl iodide (c).