The rate constant of first order reaction at 32. 3 °C is 0.343 /s must be less the 0. 543 at 25°C.
First-order reactions are very commonplace. we have already encountered examples of first-order reactions: the hydrolysis of aspirin and the reaction of t-butyl bromide with water to present t-butanol. every other reaction that famous obvious first-order kinetics is the hydrolysis of the anticancer drug cisplatin.
The value of ok suggests the equilibrium ratio of products to reactants. In an equilibrium combination both reactants and merchandise co-exist. big ok > 1 merchandise are k = 1 neither reactants nor products are desired.
Rate constant K₁ = 0. 543 /s
T₁ = 25°C
Activation energy Eₐ = 75. 9 k j/mol.
T₂ = 32. 3 °C.
K₂ =?
formula;
log K₂/K₁= Eₐ /2.303 R [1/T₁ - 1/T₂]
putting the value in the equation
K₂ = 0.343 /s
Hence, The rate constant of first order reaction at 32. 3 °C is 0.343 /s
The specific rate steady is the proportionality consistent touching on the fee of the reaction to the concentrations of reactants. The fee law and the specific charge consistent for any chemical reaction should be determined experimentally. The cost of the charge steady is temperature established.
Learn more about activation energy here:- brainly.com/question/26724488
#SPJ4
Several factors affect the rate of a chemical reaction. From the options given factors that affect the rate are:
temperature and concentration of catalysts.
As the temperature increases, also the rate of the reaction increases.
<span>The concentration of a catalysts helps a reaction to proceed more quickly to equilibrium. </span>
Answer:
the correct answer is 17 significant figures
On the periodic table it is the number on the bottom of the element.
<span>If you know the amount of neutrons you can add it to the number of protons to find the atomic mass NUMBER, which is a good approximate of the atomic mass. </span>
Answer:
CH4 +2 O2 — CO2 +2 H2O
Now we see that for 1 mol i.e. 16 grams of methane results in 1 mol of CO2 or 44 grams of CO2.
That means for 3 moles of methane , we will obtain 3 moles of CO2 OR for 48 (3*16) grams of CO2 , we will obtain (44*3) 132 grams of CO2 .That's it….
Explanation:
hey .dude hope the answer was helpful ....