Answer:
a --> true, b --> false, c --> true, d -->false
Explanation:
a) since it stays floating the gravity force and the upqards push is the same
b) if it's balanced the rocket won't move from the ground, the force of the rocket, has to exceed the force of gravity
c) since it's going in a diretion the force of gravity is exceeding the force pushing it up
d) since that are speeding up at a rate, meaning growing, the force is unbalanced.
The thin atmosphere of Mars is thought to be due to the planet's lack of a magnetic field, which has allowed the Solar wind to blow away much of the gas the planet once had. Venus, despite still having a thick atmosphere of CO2, surprisingly has a similar problem
Answer:
45.3°C
Explanation:
Heat gained = mass × specific heat × increase in temperature
q = mC (T − T₀)
Given C = 0.128 J/g/°C, m = 94.0 g, q = 305 J, and T₀ = 20.0°C:
305 J = (94.0 g) (0.128 J/g/°C) (T − 20.0°C)
T = 45.3°C
You can tell a lot about an object that's not moving,
and also a lot about the forces acting on it:
==> If the box is at rest on the table, then it is not accelerating.
==> Since it is not accelerating, I can say that the forces on it are balanced.
==> That means that the sum of all forces acting on the box is zero,
and the effect of all the forces acting on it is the same as if there were
no forces acting on it at all.
==> This in turn means that all of the horizontal forces are balanced,
AND all of the vertical forces are balanced.
Horizontal forces:
sliding friction, somebody pushing the box
All of the forces on this list must add up to zero. So ...
(sliding friction force) = (pushing force), in the opposite direction.
If nobody pushing the box, then sliding friction force = zero.
Vertical forces:
gravitational force (weight of the box, pulling it down)
normal force (table pushing the box up)
All of the forces on this list must add up to zero, so ...
(Gravitational force down) + (normal force up) = zero
(Gravitational force down) = -(normal force up) .
I’m pretty sure it just wants you to list the property’s meaning the material and density