Answer:
(a) Z = 48.3 Ω
(b) cos ∅ = 0.455
(c) Irms = 10.35 A
(d) C = 74.02 μF
(e) Irms = 4.44 A
Explanation:
Power (P) = 2.36 kW
Frequency (f) = 50 Hz
RMS Voltage (Vrms) = 500 V
Resistance (R) = 22 Ω
Inductive Reactance (XL) = 43 Ω
(a) to calculate the total impedance, use the formula:
Z = √(R² + XL²)
= √((22)² + (43)²)
= √2333
Z = 48.3 Ω
(b) To calculate the plant's power factor, we will use the formula:
cos ∅ = R/Z
= 22/48.3
cos ∅ = 0.455
(c) To calculate the RMS current used by the plant, divide the RMS voltage value by the impedance of the plant.
Irms = Vrms/Z
= 500/48.3
Irms = 10.35 A
(d) For the power factor to become unity, the inductive reactance must be equal to the capacitive reactance i.e. Xc = XL
Xc = XL
1/(2πfC) = XL
1/(2πfXL) = C
C = 1/(2π*50*43)
= 7.402 x 10⁻⁵
C = 74.02 μF
(e) P = Vrms*Irms*cos∅
Irms = P/Vrms*cos∅
= 2.22 x 10³/500*1
Irms = 4.44 A
Answer:
50 kg
Explanation:
fnet=ma
600-200=m8
divide both side by 8 to make m the subject of the formula Thus m=50kg
A mechanical wave can only travel through matter.
Land: Tectonic plate movement under the Earth can create landforms by pushing up mountains and hills. Erosion by water and wind can wear down land and create landforms like valleys and canyons. ... Landforms can exist under water in the form of mountain ranges and basins under the sea.
Atmosphere: (4.6 billion years ago)
As Earth cooled, an atmosphere formed mainly from gases spewed from volcanoes. It included hydrogen sulfide, methane, and ten to 200 times as much carbon dioxide as today's atmosphere. After about half a billion years, Earth's surface cooled and solidified enough for water to collect on it.
Ocean: After the Earth's surface had cooled to a temperature below the boiling point of water, rain began to fall—and continued to fall for centuries. As the water drained into the great hollows in the Earth's surface, the primeval ocean came into existence. The forces of gravity prevented the water from leaving the planet.