The calculation for kinetic energy is this
KE = 1/2mv^2
KE = 1/2(50)(7^2)
KE = 1/2(49•50)
KE = 1225 kgm^2/s^2.
Or simply 1225 J.
She possess this much energy when she runs.
Jenny is traveling southward. In order to stop, she needs a northward acceleration.
A better way to say it:
Jenny is traveling southward in her bumper car, so the direction of her velocity is south. In order to reduce her velocity to zero, a velocity of equal magnitude but directed north must be added to it. Then the change in velocity is positive northward, and the change in velocity per unit time is acceleration.
Answer:
There are no examples but this should be evaporation
Explanation:
Answer:
Power_input = 85.71 [W]
Explanation:
To be able to solve this problem we must first find the work done. Work is defined as the product of force by distance.

where:
W = work [J] (units of Joules)
F = force [N] (units of Newton)
d = distance [m]
We need to bear in mind that the force can be calculated by multiplying the mass by the gravity acceleration.
Now replacing:
![W = (80*10)*3\\W = 2400 [J]](https://tex.z-dn.net/?f=W%20%3D%20%2880%2A10%29%2A3%5C%5CW%20%3D%202400%20%5BJ%5D)
Power is defined as the work done over a certain time. In this way by means of the following formula, we can calculate the required power.

where:
P = power [W] (units of watts)
W = work [J]
t = time = 40 [s]
![P = 2400/40\\P = 60 [W]](https://tex.z-dn.net/?f=P%20%3D%202400%2F40%5C%5CP%20%3D%2060%20%5BW%5D)
The calculated power is the required power. Now as we have the efficiency of the machine, we can calculate the power that is introduced, to be able to do that work.
![Effic=0.7\\Effic=P_{required}/P_{introduced}\\P_{introduced}=60/0.7\\P_{introduced}=85.71[W]](https://tex.z-dn.net/?f=Effic%3D0.7%5C%5CEffic%3DP_%7Brequired%7D%2FP_%7Bintroduced%7D%5C%5CP_%7Bintroduced%7D%3D60%2F0.7%5C%5CP_%7Bintroduced%7D%3D85.71%5BW%5D)
Answer:
v_f = 3 m/s
Explanation:
From work energy theorem;
W = K_f - K_i
Where;
K_f is final kinetic energy
K_i is initial kinetic energy
W is work done
K_f = ½mv_f²
K_i = ½mv_i²
Where v_f and v_i are final and initial velocities respectively
Thus;
W = ½mv_f² - ½mv_i²
We are given;
W = 150 J
m = 60 kg
v_i = 2 m/s
Thus;
150 = ½×60(v_f² - 2²)
150 = 30(v_f² - 4)
(v_f² - 4) = 150/30
(v_f² - 4) = 5
v_f² = 5 + 4
v_f² = 9
v_f = √9
v_f = 3 m/s