Answer:
2.5
Explanation:
The capacitance of a parallel-plate capacitor filled with dielectric is given by

where
k is the dielectric constant
is the capacitance of the capacitor without dielectric
In this problem,
is the capacitance of the capacitor in air
is the capacitance with the dielectric inserted
Solving the equation for k, we find

Since Jason plays a lot of sports <em>(D)</em>, there's a good chance that he has developed a greater-than-average lung capacity. This is a good thing.
The easiest way to answer this question is by realizing there are relating the velocities of the two cars. To tackle this problem, you have to understand the picture. Car 1 travels at 35m/s and Car 2 travels at 25m/s. Based on relative velocities, we can understand that Car 1 travels 10m/s faster than Car 2 every second. So we can interpret Car 1's relative velocity to Car 2 as 10m/s. Car 1 needs to travel 10m/s till a point of catching up to Car 2 which is 462m away.
v = 10m/s
d = 462m
v = d/t
(10) = (462)/t
t = 46.2s
So it takes 46.2 seconds for Car 1 to catch up to Car 2, but the question is asking how far does Car 1 travel to catch up. So we have to use Car 1's velocity and not the relative velocity:
v = 35m/s
v = d/t
(35) = d/(46.2)
d = 1617m
Car 1 traveled a total distance of 1617m.
The kinetic energy of an object is given by:

where m is the mass of the object and v its speed. The ball in this problem has a mass of m=0.2 kg and a kinetic energy of K=40 J, so we can rearrange the previous equation to find its speed:

Answer:
18.6012339739 A
Explanation:
= Vacuum permeability = 
L = Length of wire = 55 cm
N = Number of turns = 4000
I = Current
Magnetic field is given by

The current necessary to produce this field is 18.6012339739 A