The particles that carry charge through wires in a circuit are mobile electrons. The electric field direction within a circuit is by definition the direction that positive test charges are pushed. Thus, these negatively charged electrons move in the direction opposite the electric field.
Answer:
0.117 m
Explanation:
First of all, we can find the wavelength of the wave in the problem, by using the wave equation:

where:
v = 350 m/s is the speed of the wave
f = 500 Hz is the frequency of the wave
is the wavelength
Solving for
,

This means that the distance between two consecutive points of the wave having a difference of phase of

is 0.7 m.
Here we want to find the distance between two points that have a difference of phase of

So, we can set up the following rule of three:

where d' is the distance we are looking for. Solving for d',

I can confirm, your answer is 800J (Or 800 Joules)!
I just took the test and this was the correct answer :)
Stars are located at a distance which are measured in terms of light years. Light year is an Astronomical unit used to measure distance between distant Celestial bodies.
1 light year = 9460730472580<span>800 metres
But no star is located at a distance of 1 light year. Some stars are located at millions of light years and light travels ~ 3 x 10</span>⁸ m/s. Thus light takes time to reach our atmosphere.