Answer:
Choice 1. "HI to increase".
Explanation:
I found out the hard way.
Note the signs of equilibrium:-
- Reaction don't procede forward or backward
- Concentration of products and reactants remains same .
So
if
Concentration of A is 2M then concentration of B should be same .
So equilibrium constant K is 1
![\\ \rm\rightarrowtail K=\dfrac{[Products]^a}{[Reactants]^b}](https://tex.z-dn.net/?f=%5C%5C%20%5Crm%5Crightarrowtail%20K%3D%5Cdfrac%7B%5BProducts%5D%5Ea%7D%7B%5BReactants%5D%5Eb%7D)
So
I think it got deleted but the answer is Ammonium acetate maybe this is why it got deleted 10-9=1
Homogeneous Reactions. At equilibrium, the rate of the forward and reverse reaction are equal, which is demonstrated by the arrows. The equilibrium constant, however, gives the ratio of the units (pressure or concentration) of the products to the reactants when the reaction is at equilibrium.
Answer:
B. Ca2+ import into the ER because it has the steeper concentration gradient
Explanation:
ΔGt = RT㏑(C₂/C₁)
where ΔGt is the free energy change for transport; R = 8.315 J/mol; T = 298 K; C₂/C₁ is ratio of concentrations inside and outside each organelle.
For Ca²⁺ import
ΔGt = 8.315 J/mol * 298 K * ㏑(10⁻³/10⁻⁷)
ΔGt= 3.42 kJ/mol
For H⁺ import
ΔGt = 8.315 J/mol * 298 K * ㏑ (10⁻⁴/10⁻⁷)
ΔGt = 2.73 kJ/mol
From the above values, ΔGt is greater for Ca²⁺ import because it has a steeper concentration gradient