In the pot of tea the molecules would be moving faster than in the cooled cup of tea. As liquid is heated the atoms vibrate faster which increases the distance between them. When heat leaves a substance, the molecules vibrate slower and get closer.
I believe the answer is background radiatin
Answer:
<em>Molecules of different gases with the same mass and temperature always have the same average kinetic energy - E.</em>
Answer:
SeF4 is a polar molecule
Explanation:
SeF4 is a polar molecule because a polar molecule is any molecule that have lone pairs of electrons in the central atom or have atoms that are electronegative and the electrons between that are covalently bonded are not evenly distributed.
The electronegative atoms of flourine in SeF4 are not evenly distributed and kind pairs of electrons are on the central atom.
Answer:
Explanation has been given below.
Explanation:
- Chloroform has three polar C-Cl bonds. Methylene chloride has two polar C-Cl bonds. So it is expected that chloroform should be more polar and posses higher dipole moment than methylene chloride.
- Two factors are liable for the opposite trend observed in dipole moments of methylene chloride and chloroform.
- First one is the number of hyperconjugative hydrogen atoms present in a molecule. Hyperconjugation occurs with vacant d-orbital of Cl atom. Hyperconjugation amplifies charge separation in a molecule resulting higher dipole moment.
- Methylene chloride has two hyperconjugative hydrogen atoms and chloroform has one hyperconjugative hydrogen atom.Therefore methylene chloride should have higher charge separation as compared to chloroform.
- Second one is induction of opposite polarity in a C-Cl bond by another C-Cl bond in a molecule. Higher the opposite induction of polarity, lower the charge separation in a molecule and hence lower the dipole moment of a molecule.
- Chloroform has three C-Cl bonds and methylene chloride has two C-Cl bonds. Therefore opposite induction is higher for chloroform resulting it's lower dipole moment.