A) Since the plot 1/[AB] vs time gives straight line, the order of the reaction with respect to A is second order:
rate constant, K = slope = 5.5 x 10⁻² M⁻¹S⁻¹
b) Rate law : Rate = k[AB]²
c) half life period of the 2nd order is inversely proportional to the initial concentration of the reactants
t 1/2 =

.

t 1/2 =

d) k = 5.5 x 10⁻² M⁻¹s⁻¹
Initial concentration of AB, [A₀] = 0.250 M
concentration of AB after 75 s = [A]
k =
![\frac{1}{t} [ \frac{1}{[A]} - \frac{1}{[Ao]} ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bt%7D%20%5B%20%5Cfrac%7B1%7D%7B%5BA%5D%7D%20-%20%20%5Cfrac%7B1%7D%7B%5BAo%5D%7D%20%5D)
[A] = 0.123 M
Equation: AB → A + B
concentration of AB after 75 s = 0.123 M
Amount of AB dissociated = 0.25 - 0.123 = 0.127 M
concentration of [A] produced = concentration of [B] produced = Amount of AB reacted = 0.127 M
you need to <u>lose one electron </u>
Answer: 5.48
Explanation:
pH is the negative logarithm of hydrogen ion concentration in a solution.
Mathematically, pH = - log(H+)
where H+ represent the concentration of hydrogen ion
So, to get the pH of the solution with [H +] = 3.25×10-6 M:
Apply, pH = -log(H+)
pH = - log (3.25×10-6 M)
pH = - ( -5.48)
(Note that the minus signs will cancel out each other)
Therefore pH = 5.48
Now we know that the pH of the solution with hydrogen ion concentration of 3.25×10-6 M is 5.48 (i.e slightly acidic)
Thus, we can finally say 5.48 is the pH of the solution within a solution with pH = 4.50
A science that is mostly about substances
Answer:
Volume of heptane in cylinder = 51.2mL
Volume of water = 33mL
Explanation:
Density(g/mL) = mass/ Volume
》Volume = mass/ Density
Please prompt me if I'm wrong in my workings. Hope this helped.