Answer:
The value is the temperature of the air inside the tire
340.54 K
% of the original mass of air in the tire should be released 99.706 %
Explanation:
Initial gauge pressure = 2.7 atm
Absolute pressure at inlet
= 2.7 + 1 = 3.7 atm
Absolute pressure at outlet
= 3.2 + 1 = 4.2 atm
Temperature at inlet
= 300 K
(a) Volume of the system is constant so pressure is directly proportional to the temperature.


340.54 K
This is the value is the temperature of the air inside the tire
(b). Since volume of the tyre is constant & pressure reaches the original value.
From ideal gas equation P V = m R T
Since P , V & R is constant. So
m T = constant




value of the original mass of air in the tire should be released is

⇒ -0.99706
% of the original mass of air in the tire should be released 99.706 %.
The value of the c will be (0 i+0 j+0 k). c is a vector that is along the positive x-axis and has the condition a(b+c)=0.
<h3>What is a vector?</h3>
A vector is a quantity or phenomena with magnitude and direction that are independent of one another. The phrase also refers to a quantity's mathematical or geometrical representation.
Given ;
a=3i-2j+k
b=-i-4j+3k
Given property:
a(b+c)=0
-i-4j+3k ((-i-4j+3k)+c)=0
(3+8+3)(-i-4j+3k)c=0
14(-i-4j+3k)c=0
c=0 i+0 j+0 k
Hence, the value of the c will be (0 i+0 j+0 k).
To learn more about the vector refer to the link;
brainly.com/question/13322477
#SPJ1
Answer:
a) the distances are zero, Both 1st & 2nd condition
c) the torques are equal but of the opposite sign, 2nd condition of equilibrium
Explanation:
The equilibrium conditions are
1 translational
∑ F = 0
2 rotational
∑ τ = Σ (F_i x r_i) = 0
They tell us that external torque is zero.
Therefore we have two various possibilities
a) the distances are zero, in this case we have a pure translation movement
for this situation the two equilibrium relations are fulfilled
b) the forces are zero, there is no movement
It does not make sense to use the equilibrium relations since there are no forces
c) the torques are equal but of the opposite sign, the forces are on the opposite side of the body.
In this case the 2 equilibrium relation is fulfilled, but not the first one that the force has the same direction
1: B
2: C <span>Sediments were deposited in continuous sheets that spanned the body of water that they were deposited in</span>
3: A Erosion is the action and movement of a surface process