Answer:
u = 29.22 m/s
Explanation:
distance (s) = 58.52 m
coefficient of kinetic friction (k) = 0.75
final velocity (v) = 0 m/s
acceleration due to gravity (g) = 9.8 m/s^{2}
How fast was she driving (u)
we can get how fast she was driving by using the formula below
s = ut -
...equation 1
where
- s = distance
- u = her initial velocity
- a = acceleration =

- k = coefficient of kinetic friction
- g = acceleration due to gravity
from v = u - at (recall that v = 0)
0 = u - at, therefore t = u/a = u/kg
now substituting the required values above into equation 1 we have
s = 
s = 
u = 
u = 
u = 29.22 m/s
Let us assume that rocket only runs in initial energy and not using its own to flying.
Also , let upward direction is +ve and downward direction is -ve .
Initial velocity , u = 58.8 m/s .
Acceleration due to gravity ,
.
Final velocity , v - = 0 m/s .
We know , by equation of motion .

Hence, this is the required solution .
The astronaut's weight is not 60 kg anywhere, because kg is a unit of mass, not weight.
If the astronaut's mass is 60 kg, then his weight is (60 kg)x(acceleration of gravity).
That's 588 Newtons on Earth, and 58.8 Newtons on a planet with 1/10 Earth's gravity.
The astronaut's mass of 60 kg goes with her, and doesn't depend on where she is.
Hello!
The velocity function is:

a) 2.3 s earlier, we can make
t = -2.3 s, in relation to our initial time:

b) Now we can make
t = 2.3 s:
Answer:
The answer is %pearlite = 0.06%
Explanation:
according to the exercise we have that the percentage is 1.88% C, therefore, the percentage of perlite is equal to:
%pearlite = (B*C)/(A*C) = (2-1.88)/(2-0) = 0.06%
The percentage of cementite is equal to:
%cementite = (1.88-0)/(2-0) = 0.94%