Answer:
exosphere and ionosphere.
Explanation:
very high up,the earth's atmosphere becomes very thin. the region where atoms and moleculesescape into space is referred to as the exosphere. exosphere is on top of the thermosphere.
scientists what is called the ionospherean extension of the thermosphere. so technically, ionosphere is not another atmospheric layer.
Answer:
Approximately
.
Explanation:
Note that both figures in the question come with four significant figures. Therefore, the answer should also be rounded to four significant figures. Intermediate results should have more significant figures than that.
<h3>Formula mass of strontium hydroxide</h3>
Look up the relative atomic mass of
,
, and
on a modern periodic table. Keep at least four significant figures in each of these atomic mass data.
Calculate the formula mass of
:
.
<h3>Number of moles of strontium hydroxide in the solution</h3>
means that each mole of
formula units have a mass of
.
The question states that there are
of
in this solution.
How many moles of
formula units would that be?
.
<h3>Molarity of this strontium hydroxide solution</h3>
There are
of
formula units in this
solution. Convert the unit of volume to liter:
.
The molarity of a solution measures its molar concentration. For this solution:
.
(Rounded to four significant figures.)
Answer:
The molarity (M) of the following solutions are :
A. M = 0.88 M
B. M = 0.76 M
Explanation:
A. Molarity (M) of 19.2 g of Al(OH)3 dissolved in water to make 280 mL of solution.
Molar mass of Al(OH)3 = Mass of Al + 3(mass of O + mass of H)
= 27 + 3(16 + 1)
= 27 + 3(17) = 27 + 51
= 78 g/mole
= 78 g/mole
Given mass= 19.2 g/mole


Moles = 0.246

Volume = 280 mL = 0.280 L

Molarity = 0.879 M
Molarity = 0.88 M
B .The molarity (M) of a 2.6 L solution made with 235.9 g of KBr
Molar mass of KBr = 119 g/mole
Given mass = 235.9 g

Moles = 1.98
Volume = 2.6 L


Molarity = 0.762 M
Molarity = 0.76 M