Answer:
Mg would blow off. AI would be affective to copper but not to MG
Explanation:
NaPO4 + KOH -> KPO4 + NaOH
already balance
4,410 kJ
Explanation:
Gravitational Potential Enegry (GPE) is calculated as;
GPE = <em>m*g*h</em> where;
m = mass (kg)
g = gravity (m/s²)
h = height (meters)
= 90 * 9.8 * 5000
= 4,410,000 joules
= 4,410 kJ
Answer:
- Option A): <em>Due to the constraints upton the angular momentum quantum number, the subshell </em><u><em>2d</em></u><em> does not exist.</em>
Explanation:
The <em>angular momentum quantum number</em>, identified with the letter l (lowercase L), number is the second quantum number.
This number identifies the shape of the orbital or <em>kind of subshell</em>.
The possible values of the angular momentum quantum number, l, are constrained by the value of the principal quantum number n: l can take values from 0 to n - 1.
So, you can use this guide:
Principal quantum Angular momentum Shape of the orbital
number, n quantum number, l
1 0 s
2 0, 1 s, p
3 0, 1, 2 s, p, d
Hence,
- <u>the subshell 2d (n = 2, l = 2) is not feasible</u>.
- 2s (option B) is possible: n = 2, l = 0
- 2p (option C) is possible: n = 2, l = 1
Answer: Option (4) is the correct answer.
Explanation:
It is known that density is mass divided by volume.
Mathematically, Density = 
Since, density is directly proportional to mass. So, more is the mass of an element more will be its density.
Mass of magnesium is 24.305 g/mol.
Mass of barium is 137.327 g/mol.
Mass of beryllium is 9.012 g/mol
Mass of radium is 226 g/mol.
Hence, radium has more mass therefore it will have the greatest density at STP.