Answer:
THE TEMPERATURE AT WHICH THE CHEMICAL REACTION IS BEING CONDUCTED.
Explanation:
The reaction rate constant is dependence on the temperature in which the reaction takes place. The rate of a reaction and the activation energy relationship is given by the Arrhenius equation with the rate constant as a function of temperature.
Mathematically, the rate constant is expressed as;
k(T) = Ae^-Ea/RT
where Ea is the activation energy, R is the gas constant, Ae is the pre-exponential factor and it is the frequency at which a reactant molecule collide with each other, T is the temperature.
We can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
c = 1.72 J g⁻¹ °C⁻¹
Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.
<h2>Answer:</h2>
Option A is correct
Adding an enzyme to decrease the activation energy of the reaction
<h2>Explanation:</h2>
Enzymes are the biological catalyst. They are proteins in nature. They are naturally found in humans,animals,micro-organisms,plants etc. They catalyze the chemical reactions by lowering activation energy and without being consumed in it.