Answer:
COP(heat pump) = 2.66
COP(Theoretical maximum) = 14.65
Explanation:
Given:
Q(h) = 200 KW
W = 75 KW
Temperature (T1) = 293 K
Temperature (T2) = 273 K
Find:
COP(heat pump)
COP(Theoretical maximum)
Computation:
COP(heat pump) = Q(h) / W
COP(heat pump) = 200 / 75
COP(heat pump) = 2.66
COP(Theoretical maximum) = T1 / (T1 - T2)
COP(Theoretical maximum) = 293 / (293 - 273)
COP(Theoretical maximum) = 293 / 20
COP(Theoretical maximum) = 14.65
Answer:
Honestly overall i think it looks fantastic
Explanation:
It looks like some really nice clean craftsmanship and i love the use of some different colors for some drawers to make it pop. the only con that i can possibly think of is that with it being wood and you moving it from place to place, some rubber feet or something that would prevent it from scratching/damaging anything else if it doesn't already (cant really see under it). other then that one thing i think it looks really good. well done.
This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ 
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs