1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gavmur [86]
4 years ago
6

If u +t=5 and u – t = 2, what is the value of (u – t)(u2 – ť)? ?

Mathematics
1 answer:
raketka [301]4 years ago
5 0

Answer:

The Heaviside step function, or the unit step function, usually denoted by H or θ (but sometimes u, 1 or ), is a discontinuous function, named after Oliver Heaviside (1850–1925), whose value is zero for negative arguments and one for positive arguments.

Step-by-step explanation:

L at time ť will meet at the point z " given by the equations : z " = - ( c + U ) t ... + B ) t = ť + t " = 2y - t = tı ( 93 ) Therefore , we do not recover the value 2t = 2L / c ... if the extinction time is not zero in equation 92 , one can verify the equality t ' + t ... the mirror located on the arm covers the distance Ut ' during the time t

You might be interested in
Steven has some money. If he spends $9.00, then he will have 3 5of the amount he started with
docker41 [41]
$1.80 if the question was ( he would have 3/5 of the amount he started with)
7 0
3 years ago
SOMEONE HELP I SUCK AT THIS MATH!
77julia77 [94]

Answer:

0.24

Step-by-step explanation:

2.88/12=0.24

4 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
2 years ago
I need help!!! ill give brain-list!!!
In-s [12.5K]

Answer:

8 hours worked, 64 dollars

56 dollars, 7 hours worked

themepark:

5 hours worked, 45 dollars

6 hours worked, 54 dollars

8 hours worked, 72 dollars

working at the themepark earns 5 extra dollars when they work for 5 hours.

5 0
3 years ago
List three terms that are like the given terms below.<br> - 19m<br> 28<br> 42bc<br> 2r
andrew-mc [135]

Answer:

chicken

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • Please help I don’t understand
    9·1 answer
  • What is the product?
    9·2 answers
  • Solve for R in P=IRT SHOW work<br><br><br> Solve for d in 2a-5d=30
    15·1 answer
  • Solve for u.<br> -2 (2u- 4) + 2u= 4 (u+3)
    7·1 answer
  • In one day, 18 people each withdrew $100 from an atm machine.What was the overall change in the amount of money in the atm machi
    11·1 answer
  • How do I create an equivalent expression that includes parentheses so that the value of the expression is 2 for 3+8-4x2-12
    12·1 answer
  • Solve by substitution <br> 1. 6x+ 5y=7 x-y=3<br> 2. 3a +2b =4 2a + b=6<br> 3. 2x + y= 4 4x -y=2
    10·1 answer
  • PLEASE HELP!! Theres two questions
    11·1 answer
  • Please help me :(((((
    6·1 answer
  • Identify the decimal and simplify fractional form of 80%
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!