Answer:
Because heat causes alcohol to volatilize, instead of burning it.
The combustion is not fulfilled since this is detached from the surface of the banknote that would be the necessary product to burn, in addition to considering that the necessary temperature is not reached
Explanation:
When water and alcohol are joined, they form a solution with high evaporation power, plus alcohol that has a higher degree of volatility than water, this is how these liquids are not retained on the surface of the banknote with heat and they are not it burns.
A cluster of billions of atoms
that all have magnetic fields lined up in the same way is known as a
<span>The answer is letter C. Magnetic domain.</span>
<span>
The region around a magnet where the magnetic force is exerted is known as its
The answer is letter C. Magnetic field.</span>
solution:
the change in the boiling point is given as,
dTbp =2.30°c
elevation constant for the solvent is given by,
kb=0.512°c/m

= 4.49m
Acceleration is defined as velocity per unit time.


Here, a=acceleartion,
v=velocity=36 m/s
t=time=12 s



A car at rest ends accelerates for 12 seconds. After this time the car is going 36 m/s. So acceleration that is a=3 ms⁻².
Answer:
The critical temperature of a substance is the temperature at and above which vapour of the substance cannot be liquefied, no matter how much pressure is applied.