Answer:
The mass of moon is 1/100 times and its radius 1/4 times that of earth. As a result, the gravitational attraction on the moon is about one sixth when compared to earth. Hence, the weight of an object on the moon is 1/6th its weight on the earth.
Answer:
<h2>20 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>20 m/s²</h3>
Hope this helps you
Answer:
I'd go for 'Marie drives a car'
Explanation:
Static electricity will possible form in all the scenarios, but is more likely to form when you're driving a car. This is due to the friction between the body of the car and the particles in the air around the body of the car. This is why chains are sometimes attached to fuel tankers when transporting them. The chain is made to touch the ground so that any charge built up can be safely conducted to the earth, reducing the chances of a fire outbreak due to charges igniting the fuel.
Idkhhhhhhhhhhubvgbvcccc xzzz. Bcc bbb
Explanation:
Suppose you want to shine a flashlight beam down a long, straight hallway. Just point the beam straight down the hallway -- light travels in straight lines, so it is no problem. What if the hallway has a bend in it? You could place a mirror at the bend to reflect the light beam around the corner. What if the hallway is very winding with multiple bends? You might line the walls with mirrors and angle the beam so that it bounces from side-to-side all along the hallway. This is exactly what happens in an optical fiber.
The light in a fiber-optic cable travels through the core (hallway) by constantly bouncing from the cladding (mirror-lined walls), a principle called total internal reflection. Because the cladding does not absorb any light from the core, the light wave can travel great distances.
However, some of the light signal degrades within the fiber, mostly due to impurities in the glass. The extent that the signal degrades depends on the purity of the glass and the wavelength of the transmitted light (for example, 850 nm = 60 to 75 percent/km; 1,300 nm = 50 to 60 percent/km; 1,550 nm is greater than 50 percent/km). Some premium optical fibers show much less signal degradation -- less than 10 percent/km at 1,550 nm.
1