1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Talja [164]
2 years ago
11

When electrons are accelerated by 2450v in an electron microscope they will have wavelengths of

Physics
1 answer:
Sholpan [36]2 years ago
5 0
I think the answer is A I’m
Not sure tho
You might be interested in
Jamal is skating on a sidewalk. His initial velocity is 0.0 m/s; 35 seconds later his velocity is 5.0 m/s. What is his accelerat
maxonik [38]

Answer:

answer is 0.1428

Explanation:

Data:- vf=5.0 , vi=0.0 , t=35 , a=? so appling first eq of motion vf=vi+at we have to find a=vf-vi/t , a=5.0-0.0/35 , a=5/35 ,a=0.1428m/sec²

5 0
3 years ago
Read 2 more answers
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
3 years ago
What happens when light enters a pair of glasses
alexdok [17]

Answer:

It refracts when it hits the glass.

6 0
3 years ago
What is the kinetic energy in joules of a 0.05. kg bullet traveling 310 m/s
Wittaler [7]
The formula is=1/2(m x v^2)

so = 1/2*(0.05)*(310)^2

ans is =2402.5 joules
3 0
3 years ago
The energy that generates wind comes from what source?
Rudiy27

Answer:

we can say that wind energy is due to

D) Severe thunderstorms

Explanation:

As we know that wind energy is converted into kinetic energy of wind mills

This kinetic energy of wind mill is then converted into electrical energy using turbine

now we can consider here  energy conservation theory that energy is only converted from one form to other form

it neither be destroyed nor be created but it can transfer from one form to other form

So here we can say that wind energy is due to

D) Severe thunderstorms

3 0
3 years ago
Other questions:
  • A test rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward
    6·1 answer
  • Thermopane window is constructed, using two layers of glass 4.0 mm thick, separated by an air space of 5.0 mm.
    15·1 answer
  • A dependent variable is also called a _____?
    13·1 answer
  • Stuntman's Freefall, a ride at Six Flags Great Adventure in New Jersey, stands 39.6 meters high. Ignoring the force of friction,
    10·1 answer
  • An object is 16.0cm to the left of a lens. The lens forms an image 36.0cm to the right of the lens. a) What is the focal length
    15·1 answer
  • a 2.00 kg friction-less block is attached to an ideal spring with force constant 315 N/m.Initially, the spring is neither stretc
    11·1 answer
  • An astronaut has left the International Space Station to test a new space scooter. Her partner measures the following velocity c
    15·1 answer
  • A 2.00 kg object is attached to a spring and placed on frictionless, horizontal surface. Ahorizontal force of 18.0 N is required
    5·1 answer
  • Which statement best explains why an object appears green in sunlight?
    15·2 answers
  • How can I solve the following?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!