Answer:
6.5 m/s
Explanation:
We are given that
Distance, s=100 m
Initial speed, u=1.4 m/s
Acceleration, 
We have to find the final velocity at the end of the 100.0 m.
We know that

Using the formula






Hence, her final velocity at the end of the 100.0 m=6.5 m/s
Neither set of choices is correct.
If the distance is tripled, then the forces decrease to
1/9 Fg. and. 1/9 Fe.
Note. When the objects are charged, the gravitational force Fg can almost always be ignored, since Fe is like 10^40 greater when the quantities of mass and charge are similar.
final velocity = initial
velocity + (acceleration x time) <span>
3.9 m/s = 0 m/s + (acceleration x 0.11 s)
3.9 m/s / 0.11 s = acceleration
30.45 m/s^2 = acceleration
distance = (initial velocity x time) +
1/2(acceleration)(time^2)
distance (0 m/s x 0.11 s) + 1/2(30.45 m/s^2)(0.11s ^2)
<span>distance = 0.18 m</span></span>
<span>It is the lowest velocity which a body must have in order to escape the gravitational attraction of a particular planet or other object.
Every planet has their own corresponding escape velocities. Example - Earth has escape velocity of 11.2 Km/s. It means, if you want to leave the Earth's gravitational field then it's the lowest speed which you need to acquire otherwise you wouldn't do that!
Hope this helps!</span>