Answer: If you think about it, B. would be the most reasonable answer with the given factors.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133
he total number of each of the atoms on the left and the right are the same thus the reaction equation is balanced.
<h3>What is the law of conservation of mass?</h3>
The law of conservation of mass states that, mass can neither be created nor destroyed. In view of the law of conservation of mass, the total mass of the reactants on the left-hand side must be the same as the total mass of products at the right hand side.
Thus is the total mass of the reactants and the products are not the same, it then follows that the reaction does not demonstrate the law of conservation of mass. In this case, the total number of each of the atoms on the left and the right are the same thus the reaction equation is balanced.
Learn more about conservation of mass:brainly.com/question/13383562
#SPJ1