Answer:
The true solution is x=4/9
EXPLANATION
The logarithmic equation given to us is
We need to use the quotient rule of logarithms.
When we apply this law the expression becomes
We now take the antilogarithm of both sides to get
We square both sides to get,
We evaluate to obtain,
This simplifies to
We divide both sides by 36 to get
We simplify to get,
The maxima of f(x) occur at its critical points, where f '(x) is zero or undefined. We're given f '(x) is continuous, so we only care about the first case. Looking at the plot, we see that f '(x) = 0 when x = -4, x = 0, and x = 5.
Notice that f '(x) ≥ 0 for all x in the interval [0, 5]. This means f(x) is strictly increasing, and so the absolute maximum of f(x) over [0, 5] occurs at x = 5.
By the fundamental theorem of calculus,
The definite integral corresponds to the area of a trapezoid with height 2 and "bases" of length 5 and 2, so
Answer:
DE = 13.4 cm (to 1 decimal place)
Step-by-step explanation:
Given: ABCD is a square
BC = AC = 12 cm (opposite sides of a square are congruent)
E is midpoint of BC (given)
BE = EC = 12/2 = 6 cm
CD = AB = 12 cm (opposite sides of a square are congruent)
angle ECD is a right angle (interior angles of a square are 90 deg.)
Consider right triangle ECD
DE = sqrt(EC^2+CD^2) ............. pythagorean theorem
= sqrt(6^2+12^2)
= sqrt ( 36+144 )
= sqrt (180)
= 2 sqrt(45)
= 13.416 (to three dec. places)