(a) Iron (iii) sulphate:
From the periodic table:
mass of iron = 55.845 grams
mass of sulphur = 32.065 grams
mass of oxygen = 16 grams
Iron (iii) sulphate has the formula: Fe2(SO4)3
molar mass = 2(55.845) + 3(32.065) + 3(4)(16) = 399.885 grams
(b) Sodium hydroxide:
From the periodic table:
mass of sodium = 22.989 grams
mass of oxygen = 16 grams
mass of hydrogen = 1 gram
Sodium hydroxide has the formula: NaOH
molar mass = 22.989 + 16 + 1 = 39.989 grams
(c) Barium carbonate
From the periodic table:
mass of barium = 137.327 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Barium carbonate has the formula: BaCO3
molar mass = 137.327 + 12 + 3(16) = 197.327 grams
(d) ammonium nitrate:
From the periodic table:
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of oxygen = 16 grams
Ammonium nitrate has the formula: NH4NO3
molar mass = 14 + 4(1) + 14 + 3(16) = 80 grams
(e) Lead (iv) oxide
From the periodic table:
mass of lead = 207.2 grams
mass of oxygen = 16 grams
Lead (iv) oxide has the formula: PbO2
molar mass = 207.2 + 2(16) = 239.2 grams
From the above calculations, we can see that:
Iron (iii) sulphate has the greatest mass.
Well it breaks down into small parts
Answer:
Here you go! 50% of your writing piece
Explanation:
Foods produced from or using GM organisms are often referred to as GM foods.
GM foods are developed and marketed because there is some advantage either to the producer or consumer of these GM foods. GM seed developers wanted their products to be accepted by producers and have concentrated on innovations that bring direct benefit to farmers and generally the food industry.
One objective for developing plants based on GM organisms is to improve crop protection. The GM crops currently on the market are mainly aimed at an increased level of crop protection through the introduction of resistance against plant diseases caused by insects or viruses or through increased tolerance towards herbicides.
Resistance against insects is achieved by incorporating into the food plant the gene for toxin production from the bacterium Bacillus thuringiensis. GM crops that inherently produce this toxin have been shown to require lower quantities of insecticides in specific situations, where pest pressure is high.
Using ideal gas equation,
P\times V=n\times R\times T
Here,
P denotes pressure
V denotes volume
n denotes number of moles of gas
R denotes gas constant
T denotes temperature
The values at STP will be:
P=1 atm
T=273 K
R=0.0821 atm L mol ⁻¹
Mass of HCl given= 49.8 g
Molar mass of HCl given=36.41
Number of moles of gas, n= \frac{Given mass of the substance}{Molar mass of the substance}
Number of moles of gas, n= \frac{49.8}{36.46}
Number of moles of gas, n= 1.36
Putting all the values in the above equation,
V=\frac{1.36\times 0.0821\times 273}{1}
V=30.6 L
So the volume will be 30.6 L.