1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
3 years ago
7

gayle cooks a roast in her microwave oven. the klystron tube in the oven emits photons whose energy is 1.20 x 10^-3 ev. what are

the wavelengths of these photons
Physics
1 answer:
AveGali [126]3 years ago
7 0

Answer:

\lambda=1.03\times 10^{-3}\ m

Explanation:

Given that,

The energy of the microwave oven is 1.2\times 10^{-3}\ eV.

We need to find the wavelength of these photons.

1.2\times 10^{-3}\ eV=1.2\times 10^{-3}\times 1.6\times 10^{-19}\\\\=1.92\times 10^{-22}\ J

The energy of a wave is given by :

E=\dfrac{hc}{\lambda}\\\\\lambda=\dfrac{hc}{E}

Put all the values,

\lambda=\dfrac{6.63\times 10^{-34}\times 3\times 10^8}{1.92\times 10^{-22}}\\\\\lambda=1.03\times 10^{-3}\ m

So, the wavelength of these photon is 1.03\times 10^{-3}\ m.

You might be interested in
Easy question. Answer should include one line reasoning
KATRIN_1 [288]
C.figure 3 is the answer had the same and got is right
7 0
3 years ago
Read 2 more answers
Michael Jordan, el célebre basquetbolista, ganó el torneo de clavadas de la NBA en 1988. Para lograr la hazaña saltó 1.35 metros
kozerog [31]

(a) 0.40 s

First of all, let's find the initial speed at which Jordan jumps from the ground.

The maximum height is h = 1.35 m. We can use the following equation:

v^2-u^2=2gh

where

v = 0 is the velocity at the maximum height

u is the initial velocity

g=-9.8 m/s^2 is the acceleration of gravity

Solving for u,

u=\sqrt{-2gh}=\sqrt{-2(-9.8)(1.35)}=5.14 m/s

The time needed to reach the maximum height can now be found by using the equation

v=u+gt

Solving for t,

t=\frac{v-u}{g}=\frac{0-5.14}{-9.8}=0.52s

Now we can find the velocity at which Jordan reaches a point 20 cm below the maximum height, so at a height of

h' = 1.35 - 0.20 = 1.15 m

Using again the equation

v'^2-u^2=2gh'

we find

v'=\sqrt{u^2+2gh}=\sqrt{5.14^2+2(-9.8)(1.15)}=1.97 m/s

And the corresponding time is

t'=\frac{v'-u}{g}=\frac{1.97-5.14}{-9.8}=0.32s

So the time to go from h' to h is

\Delta t = t-t'=0.52-0.32=0.20 s

And since we have also to take into account the fall down (after Jordan reached the maximum height), which is symmetrical, we have to multiply this time by 2 to get the total time of permanence in the highest 20 cm of motion:

\Delta t=2\cdot 0.20 = 0.40 s

(b) 0.08 s

This part is easier since we need to calculate only the velocity at a height of h' = 0.20 m:

v'^2-u^2=2gh'

v'=\sqrt{u^2+2gh}=\sqrt{5.14^2+2(-9.8)(0.20)}=4.74 m/s

And the corresponding time is

t'=\frac{v'-u}{g}=\frac{4.74-5.14}{-9.8}=0.04s

So this is the time needed to go from h=0 to h=20 cm; again, we have to take into account the motion downwards, so we have to multiply this by 2:

\Delta t = 2\cdot 0.04 =0.08 s

8 0
3 years ago
A typical adult can deliver about 12.5 N·m of torque when attempting to open a twist-off cap on a bottle. Assume that bottle cap
Nikitich [7]
Uhhhhhhhhh just tryna get a point so I can ask a question so eh I’m using ur question heheheheheh
3 0
3 years ago
A student at a window on the second floor of a dorm sees her physics professor walking on the sidewalk beside the building. she
klasskru [66]
Refer to the diagram shown below.

In order for the balloon to strike the professor's head, th balloon should drop by 18 - 1.7 = 16.3 m in the time at the professor takes to walk 1 m.
The time for the professor to walk 1 m is
t = (1 m)/(0.45 m/s) = 2.2222 s

The initial vertical velocity of the balloon is zero.
The vertical drop of the balloon in 2.2222 s is
h = (1/2)*(9.8 m/s²)*(2.2222 s)² = 24.197 m

Because 24.97 > 16.3, the balloon lands in front of the professor, and does not hit the professor.

The time for the balloon to hit the ground is
(1/2)*(9.8)*t² = 18
t = 1.9166 s

The time difference is 2.2222 - 1.9166 = 0.3056 s
Within this time interval, the professor travels 0.45*0.3056 = 0.175 m
Therefore the balloon falls 0.175 m in front of the professor.

Answer: 
The balloon misses the professor, and falls 0.175 m in front of the professor.

8 0
3 years ago
How do I do this question?
Mkey [24]

a. 27

after that all you need to do is use the work formula as you will be able to acheive results

5 0
3 years ago
Other questions:
  • An object travels along a straight, horizontal surface with an initial speed of 2 ms. The position of the object as a function o
    11·1 answer
  • The power dissipated in each of two resistors is the same. The current across resistor A is triple that across resistor B. If th
    10·1 answer
  • What property do the following elements have in common? sulfur, iodine, and magnesium A) Same phase at room temperature. B) Good
    10·2 answers
  • the average power of the Sun is 3.79x1026 Watts, answer the following questions: 13. What is the average intensity of light at E
    8·1 answer
  • If a gas has a volume of 1.25 L and a pressure of 1.75 atm, what will the pressure be if the volume is changed to 3.15 L?
    9·1 answer
  • AAAAAAAAAH
    10·2 answers
  • A person who has a job that requires working all night and sleeping during the day will end up fighting hos or her natural
    8·2 answers
  • Gizmo force and fan cart
    5·1 answer
  • Material through which a wave passes
    11·1 answer
  • If a gun is fired straight up and has a muzzle velocity of 424 m/s how long will it take the bullet to reach its maximum height?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!