Answer:
B) 1.2 N, toward the center of the circle
Explanation:
The circumference of the circle is:
C = 2πr
C = 2π (0.70 m)
C = 4.40 m
So the velocity of the ball is:
v = C/t
v = 4.40 m / 0.60 s
v = 7.33 m/s
Sum of the forces in the radial direction:
∑F = ma
T = m v² / r
T = (0.015 kg) (7.33 m/s)² / (0.70 m)
T = 1.2 N
The tension force is 1.2 N towards the center of the circle.
Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>
A supernova is a star that suddenly increases greatly in brightness because of a catastrophic explosion that ejects most of its mass.