Hi there!
We know that:
Force due to gravity = Mgsinθ
Force due to friction = μMgcosθ
Let the positive direction be directed in the direction of the block's acceleration, which is downward.
Thus:
ΣF = Mgsinθ - μMgcosθ
Solving for acceleration requires diving all terms by the mass, so:
a = gsinθ - μgcosθ
Substitute in given values. (g = 9.8 m/s²)
a = 9.8sin(30) - 0.3(9.8)cos(30) = 2.354 m/s²
1) Increasing the current flow
2) Increasing the number of coils
3) Passing an 'iron core' through the coil of the electromagnet
The total momentum of a system is the vector sum of all the individual masses that comprise the system.
Moreover, To calculate the total momentum of two objects during a collision, add their individual momentums. You can calculate the momentum for each object using the formula p=mv, where p is the momentum, m is the mass, and v is the velocity. The law of conservation of momentum can be expressed as follows. For a collision between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
You can learn more about this at:
brainly.com/question/20301772#SPJ4
Answer:
The direction in which a positive charge would move.
Explanation:
The direction of an electric current is by convention the direction in which a positive charge would move. Thus, the current in the external circuit is directed away from the positive terminal and toward the negative terminal of the battery. Electrons would actually move through the wires in the opposite direction.
Answer: 4. Infrared radiation
Explanation: Both carbon dioxide and methane are excellent absorbers of heat. The heat energy causes the molecule of carbon dioxide and methane to vibrate. As a result of this, the molecules gives up the extra energy by emitting infrared photon.
Therefore, the Evidence that supports the idea that increases in carbon dioxide and methane in Earth's atmosphere are major contributors to global warming is primarily based on the fact that carbon dioxide and methane are excellent absorbers of infrared radiation