Answer:
On real life example of a scenario that takes advantage of the inverse relationship between force and time when impulse is constant is when making a serve with a lawn tennis racket
How It is an example of impulse is that when a serve is made by moving the bat slowly, the lawn tennis player uses less force and the ball is in contact with the string for longer a period
When however, the lawn tennis player moves the racket faster, with the strings of the racket highly tensioned he uses more force and the ball also spends less time on the racket to produce the same momentum
Explanation:
The impulse of a force, ΔP is given by the following formula;
ΔP = F × Δt
Where ΔP is constant, we have;
F ∝ 1/Δt
Therefore, for the same impulse, when the force is increased, the time of contact is decreases and vice versa.
Everyone knows that one of their favorite past times is sitting in front of the television and watching movies, shows, or playing video games. However with this almost motionless, lazy activity comes a great deal of static physics and mechanics.
When you are sitting down enjoying whatever show it is you may be watching, you actually have several forces acting on you concurrently. For example, by sitting on the couch with no extra weight on you, your weight is equivalent to the normal force, or the force of the couch on you. In addition to the force of the couch of you, if you are leaning on an arm or laying down, a similar force acts on you, except at an angle or incline. The general rule for laying on the couch watching television is that whatever force you exert on an object, that object exerts the same force in the opposite direction, or 180 degrees around.
<span>Density is 3.4x10^18 kg/m^3
Dime weighs 1.5x10^12 pounds
The definition of density is simply mass per volume. So let's divide the mass of the neutron star by its volume. First, we need to determine the volume. Assuming the neutron star is a sphere, the volume will be 4/3 pi r^3, so
4/3 pi 1.9x10^3
= 4/3 pi 6.859x10^3 m^3
= 2.873x10^10 m^3
Now divide the mass by the volume
9.9x10^28 kg / 2.873x10^10 m^3 = 3.44588x10^18 kg/m^3
Since we only have 2 significant digits in our data, round to 2 significant digits, giving 3.4x10^18 kg/m^3
Now to figure out how much the dime weighs, just multiply by the volume of the dime.
3.4x10^18 kg/m^3 * 2.0x10^-7 m^3 = 6.8x10^11 kg
And to convert from kg to lbs, multiply by 2.20462, so
6.8x10^11 kg * 2.20462 lb/kg = 1.5x10^12 lb</span>
Answer: 250n
Explanation:
The formula for gravitational force is: F = (gMm)/r^2
There are two factors at play here:
1) The mass of the planet 'M'
2) The radius 'r'
We can ignore the small M and the g, they are constants that do not alter the outcome of this question.
You can see that both M and r are double that of earth. So lets say earth has M=1 and r=1. Then, new planet would have M=2 and r=2. Let's sub these two sets into the equation:
Earth. F = M/r^2 = 1/1
New planet. F = M/r^2 = 2/4 = 1/2
So you can see that the force on the new planet is half of that felt on Earth.
The question tells us that the force on earth is 500n for this person, so then on the new planet it would be half! So, 250n!
The type of friction of a kite suspended
in the sky that is flowing back and forth is fluid friction. The fluid here is
the air that helps the kite move back and forth. The kite feels a drag force
due to air which acts in the upward direction.