Answer:
28.9 g
Explanation:
We know that we will need a balanced equation with masses, moles, and molar masses of the compounds involved.
<em>Gather all the information in one place</em> with molar masses above the formulas and masses below them.
: 159.69 28.01
Fe₂O₃ + 3CO ⟶ 2Fe + 3CO₂
Mass/g: 55.0
1. Use the molar mass of Fe₂O₃ to calculate the moles of Fe₂O₃.

2. Use the molar ratio of CO:Fe₂O₃ to calculate the moles of CO.

3.Use the molar mass of CO to calculate the mass of CO.
Answer : The chemical symbol for the element that results from this process is, (Ar) for argon.
Explanation :
Electron capture : In this decay process, a parent nuclei absorbs an electron and gets converted into a neutron. Simply, a proton and an electron combines together to form a neutron. Mass number does not change in this process.

The equation for the given reaction is,

Thus, the chemical symbol for the element that results from this process is, argon (Ar).
Answer:

Explanation:
Hello,
In this case, the first step is to compute the molar mass of carbon dioxide as shown below, considering it has one carbon atom and two oxygen atoms:

It is important to notice it is the mass in one mole of such compound. Afterwards, we need to use the Avogadro's number to compute the how many moles are in the given molecules of carbon dioxide as shown below:

Finally, the mass by using the molar mass:

Best regards.
SOLVENT- A substance (usually a liquid) capable of dissolving one or more pure substances. SOLUTE- Solid, liquid or gas that is dissolved in a solvent. SOLUTION- A homogeneous (looks the same throughout) mixture of a solvent and one or more solutes. AQUEOUS SOLUTION- Solution in which water is the solvent.
Answer
it raises the boiling point substance is dissolved in water
Answer:
-30.7 kj/mol
Explanation:
The standard free energy for the given reaction that is the hydrolysis of ATP is calculated using the formula: ∆Go ’= -RTln K’eq
where,
R = -8.315 J / mo
T = 298 K
For reaction,
1. K′eq1=270,
∆Go ’= -RTln K’eq
= - 8.315 x 298 x ln 270
= - 8.315 x 298 x 5.59
= - 13,851.293 J / mo
= - 13.85 kj/mol
2. K′eq2=890
∆Go ’= -RTln K’eq
= - 8.315 x 298 x ln 890
= - 8.315 x 298 x 6.79
= - 16.82 kj/mol
therefore, total standard free energy
= - 13.85 + (-16.82)
= -30.7 kj/mol
Thus, -30.7 kj/mol is the correct answer.