Answer:
The work done by a particle from x = 0 to x = 2 m is 20 J.
Explanation:
A force on a particle depends on position constrained to move along the x-axis, is given by,

We need to find the work done on a particle that moves from x = 0.00 m to x = 2.00 m.
We know that the work done by a particle is given by the formula as follows :


So, the work done by a particle from x = 0 to x = 2 m is 20 J. Hence, this is the required solution.
Increasing the temperature causes an increase in the average kinetic energy of the particles of a material.
<h3>
What is average kinetic energy of particles?</h3>
The average kinetic energy of particles is the energy possessed by particles due to their constant motion.
The constant motion of particles occurs due to the energy acquired by the particles, when the temperature of the particles increases, the average kinetic energy increases which in turn increases the speed of the particles.
Thus, we can conclude that, increasing the temperature causes an increase in the average kinetic energy of the particles of a material.
Learn more about average kinetic energy here: brainly.com/question/9078768
Answer:
10 m/s^2
Explanation:
Equation: F = ma.
a = acceleration
m = mass
F = force
Because we are trying to find acceleration instead of force we want to rearrange the equation to solve for a which is F/m = a.
F = 20
m = 2
a = ?
a = F/m
a = 20/2
a = 10 m/s^2
RADIATION BELTS....... I think but it should be radiation belt