1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uranmaximum [27]
1 year ago
5

You throw a stone horizontally at a speed of 5.0 m/s from the top of a cliff that is 78.4 m high.

Physics
1 answer:
Monica [59]1 year ago
4 0

a)You throw a stone horizontally at a speed of 5.0 m/s from the top of a cliff that is 78.4 m high.

from above statement we got

height = 78.4 m

since the ball is thrown, so its vertical velocity would be zero

u = 0

taking g = 9.8m/s^2

now, using the equation of motion

h = ut + gt^2/2

now putting all the values in it

we got ,

78.4 = 9.8 * t^2/ 2

by solving we got,

t = 4 sec

b) now, since along the horizontal , no force acting and accelaration is zero so

R = ut , R is RANGE

R = 5 * 4

range =  20 m

c)  vertical components of the stone’s velocity just before it hits the ground = v sin θ =

horizontal   components of the stone’s velocity  just before it hits the ground = v cos θ

To know more about velocity  visit :

brainly.com/question/18084516

#SPJ9

You might be interested in
Find the wavelength λ of the 80.0-khz wave emitted by the bat. express your answer in millimeters.
vfiekz [6]

Answer:

4.29 millimeters

Explanation:

Bats emit ultrasound waves: in air, ultrasound waves travel at a speed of

v=343 m/s

The frequency of the waves emitted by this bat is:

f=80.0 kHz = 80,000 Hz

Therefore we can find the wavelength of the wave emitted by the bat by using the relationship between speed, frequency and wavelength:

\lambda=\frac{v}{f}=\frac{343 m/s}{80,000 Hz}=4.29\cdot 10^{-3} m=4.29 mm

4 0
3 years ago
A 1000-turn solenoid is 50 cm long and has a radius of 2.0 cm. It carries a current of 18.0 A. What is the magnetic field inside
vitfil [10]

Answer:

The value  is  B =  0.0452 \  T

Explanation:

From the question we are told that

   The number of turns is  N  =  1000

    The length is  L =  50 cm =  0.50 m  

    The radius is  r =  2.0 cm  =  0.02 m

     The current is I  =  18.0 A

   

Generally the magnetic field is mathematically represented as

         B = \mu_o  * \frac{N }{L}  *  I

Here \mu_o is the permeability of free space with value  

     \mu_o  =  4\pi * 10^{-7} N/A^2

So

     B =  4\pi * 10^{-7}  *   \frac{1000}{0.50} *  18.0

=>   B =  0.0452 \  T

3 0
3 years ago
Five identical quintuplets leave earth when they reach the age of 21, in the year 2121. Each quintuplet goes on a spaceship jour
Elena-2011 [213]

Answer:

Explanation:

This is a problem based on time dilation , a theory given by Albert Einstein .

The formula of time dilation is as follows .

t₁ = \frac{t}{\sqrt{1-\frac{v^2}{c^2} } }

t is time measured on the earth and t₁ is time measured by man on ship .

A ) Given t = 20 years , t₁ = ? v = .4c

\frac{20}{\sqrt{1-\frac{.16c^2}{c^2} } }

=1.09 x 20

t₁= 21.82 years

B ) Given t = 5 years , t₁ = ? v = .2c

\frac{5}{\sqrt{1-\frac{.04c^2}{c^2} } }

=1.02 x 5

t₁= 5.1 years

C ) Given t = 10 years , t₁ = ? v = .8c

\frac{10}{\sqrt{1-\frac{.64c^2}{c^2} } }

=1.67 x 10

t₁= 16.7  years

D ) Given t = 10 years , t₁ = ? v = .4c

\frac{10}{\sqrt{1-\frac{.16c^2}{c^2} } }

=1.09 x 10

t₁= 10.9  years

E ) Given t = 20 years , t₁ = ? v = .8c

\frac{20}{\sqrt{1-\frac{.64c^2}{c^2} } }

=1.67 x 20

t₁= 33.4   years

7 0
2 years ago
Your grandmother enjoys creating pottery as a hobby. She uses a potter's wheel, which is a stone disk of radius R-0.520 m and ma
Lesechka [4]

Answer:

0.54454

104.00902 N

Explanation:

m = Mass of wheel = 100 kg

r = Radius = 0.52 m

t = Time taken = 6 seconds

\omega_f = Final angular velocity

\omega_i = Initial angular velocity

\alpha = Angular acceleration

Mass of inertia is given by

I=\dfrac{mr^2}{2}\\\Rightarrow I=\dfrac{100\times 0.52^2}{2}\\\Rightarrow I=13.52\ kgm^2

Angular acceleration is given by

\alpha=\dfrac{\tau}{I}\\\Rightarrow \alpha=\dfrac{\mu fr}{I}\\\Rightarrow \alpha=\dfrac{\mu 50\times 0.52}{13.52}

Equation of rotational motion

\omega_f=\omega_i+\alpha t\\\Rightarrow \omega_f=\omega_i+\dfrac{\mu (-50)\times 0.52}{13.52}t\\\Rightarrow 0=60\times \dfrac{2\pi}{60}+\dfrac{\mu (-50)\times 0.52}{13.52}\times 6\\\Rightarrow 0=6.28318-11.53846\mu\\\Rightarrow \mu=\dfrac{6.28318}{11.53846}\\\Rightarrow \mu=0.54454

The coefficient of friction is 0.54454

At r = 0.25 m

\omega_f=\omega_i+\dfrac{0.54454 (-50)\times 0.52}{13.52}6\\\Rightarrow 0=60\times \dfrac{2\pi}{60}+\dfrac{0.54454 f\times 0.25}{13.52}6\\\Rightarrow 2\pi=0.06041f\\\Rightarrow f=\dfrac{2\pi}{0.06041}\\\Rightarrow f=104.00902\ N

The force needed to stop the wheel is 104.00902 N

5 0
3 years ago
A 1.0 m string with a 5 g stopper on the end is whirled in a vertical circle. The speed of the stopper is 8 m/s at the top of th
Andrew [12]

Answer:

Explanation:

A )

At the bottom of the circle , the potential energy of the stopper is converted into kinetic energy

1/2 m V² = mg x 2r + 1/2 mv²

m is mass of stopper , V is velocity at the bottom , r is radius of the circular path which is length of the string , v is velocity at the top

1/2  V² = g x 2r + 1/2 v²

 V² = g x 4r +  v²

 V² = 9.8 x 4 +  8²

V² = 103.2

V = 10.16 m/s

B )

If T be the tension at the top

Net downward force

= mg + T . This force provides centripetal force for the circular motion

mg +T = mv² / r

T =   mv²/r -mg

= m ( v²/r - g )

= .005 ( 8²/1 -g )

= .005 x 54.2

= .27 N .

C ) At the bottom

Net force = T  - mg , T is tension at the bottom , V is velocity at bottom

T-mg = mV²/r

T = m ( V²/r +g )

= .005 ( 10.16²/1 +9.8)

= .005 x 113

= .56 N .

3 0
3 years ago
Other questions:
  • A velocity-time graph can give you
    8·1 answer
  • A solar cell generates a potential difference of 0.25 V when a 550 Ω resistor is connected across it, and a potential difference
    12·1 answer
  • A spacecraft is fueled using hydrazine (N2H4; molecular weight of 32 grams per mole [g/mol]) and carries 1640 kilograms [kg] of
    10·1 answer
  • 1. What do you need to change the momentum of a system?
    7·1 answer
  • What is surface water or runoff?
    11·1 answer
  • In the levers lab when you changed the position of the fulcrum, what else changed?
    8·1 answer
  • Diffraction spreading for a flashlight is insignificant compared with other limitations in its optics, such as spherical aberrat
    7·1 answer
  • 12. Which of these is more dense?
    10·1 answer
  • Can someone please help with this problem?
    8·1 answer
  • When you’re driving on the freeway it’s necessary to keep your foot on the accelerator to keep the car moving at a constant spee
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!