Answer: The mass of the sculpture is 11.8kg
Explanation:
Using the equation of fundamental frequency of a taut string.
f = (1/2L)*√(T/μ) .... (Eqn1)
Where
f= frequency in Hertz =80Hz
T = Tension in the string = Mg
M represent the mass of the substance (sculpture) =?
g= 9.8m/s^2
L= Length of the string=90cm=0.9m
μ= mass density = mass of string /Length of string
mass of string =5g=0.005kg
L=0.9m
μ=0.005/0.9 = 0.0056kg/m
Using (Eqn1)
80= 1/(2*0.9) √(T/0.0056)
144= √(T/0.0056)
Square both sides
20736= T/0.0056
T= 116.12N
Recall that T =Mg
116.12= M * 9.8
M=116.12/9.8
M= 11.8kg
Therefore the mass of the sculpture is 11.8kg
Answer:
F = - K x force is opposed to direction of extension
F = -100 N / m * .5 m = -50 N
Answer:
F=248.5W N
Explanation:
Newton's 2nd Law tells us that F=ma. We will use their averages always. The average acceleration the tennis ball experimented is, by definition:

Since we start counting at 0s and the ball departs from rest, this is just 
So we can write:

Where in the last step we have just multiplied and divided by g, the acceleration of gravity. This allows us to introduce the weight of the ball W since W=gm, so we have:

Substituting our values:

Where the average force exerted has been written it terms of the tennis ball's weight W.
Answer:These two forces are called action and reaction forces and are the subject of Newton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects.
Explanation: