1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juliette [100K]
3 years ago
5

An object of mass 30 kg is falling in air and experiences a force due to air resistance of 50 newtons. Calcuate the acceleration

of the object
Physics
1 answer:
rjkz [21]3 years ago
6 0

Answer:

this answer you question

You might be interested in
As an astronaunt travels from the surface of the earth to a postion that is four times
allochka39001 [22]

Answer:

Explanation:

4 0
3 years ago
Read 2 more answers
A concrete piling of 50 kg is suspended from a steel wire of diameter 1.0 mm and length 11.2 m. How much will the wire stretch?
pentagon [3]

Explanation:

It is given that,

Mass of concrete pilling, m = 50 kg

Diameter of wire, d = 1 mm

Radius of wire, r = 0.0005 m

Length of wire, L = 11.2

Young modulus of steel, Y=20\times 10^{10}\ N/m^2

The young modulus of a wire is given by :

Y=\dfrac{\dfrac{F}{A}}{\dfrac{\Delta L}{L}}

Y=\dfrac{F.L}{A\Delta L}

\Delta L=\dfrac{F.L}{A.Y}

\Delta L=\dfrac{50\ kg\times 9.8\ m/s^2\times 11.2\ m}{\pi (0.0005\ m)^2\times 20\times 10^{10}\ N/m^2}

\Delta L=0.034\ m

So, the wire will stretch 0.034 meters. Hence, this is the required solution.

8 0
4 years ago
The following is the longitudinal characteristic equation for an F-89 flying at 20,000 feet at Mach 0.638. The Short Period natu
BartSMP [9]

Answer:

hello your question is incomplete  attached below is the missing part  

answer : short period oscillations frequency  = 0.063 rad / sec

              phugoid oscillations natural frequency ( w_{np} ) = 4.27 rad/sec

Explanation:

first we have to state the general form of the equation

= ( S^2 + 2\alpha _{p} w_{np} S + w^{2} _{np} ) (S^{2} + 2\alpha _{s} w_{ns}S + w^{2} _{ns}  ) = 0

where :

w_{np}  = Natural frequency of plugiod oscillation

\alpha _{p} = damping ratio of plugiod  oscilations

comparing the general form with the given equation

w^{2} _{np}  = 18.2329

w^{2} _{ns} = 0.003969

hence the short period oscillation frequency ( w_{ns} ) =  0.063 rad/sec

phugoid oscillations natural frequency ( w_{np} ) = 4.27 rad/sec

8 0
3 years ago
Under the assumption that the beam is a rectangular cantilever beam that is free to vibrate, the theoretical first natural frequ
BartSMP [9]

Answer:

a) Δf = 0.7 n , e)   f = (15.1 ± 0.7) 10³ Hz

Explanation:

This is an error about the uncertainty or error in the calculated quantities.

Let's work all the magnitudes is the SI system

The frequency of oscillation is

        f = n / 2π L² √( E /ρ)

where n is an integer

Let's calculate the magnitude of the oscillation

       f = n / 2π (0.2335)² √ (210 10⁹/7800)

       f = n /0.34257 √ (26.923 10⁶)

       f = n /0.34257    5.1887 10³

       f = 15.1464 10³ n

a) We are asked for the uncertainty of the frequency (Df)

       Δf = | df / dL | ΔL + df /dE ΔE + df /dρ Δρ

in this case no  error is indicated in Young's modulus and density, so we will consider them exact

       ΔE = Δρ = 0

       Δf = df /dL  ΔL

       df = n / 2π   √E /ρ   | -2 / L³ | ΔL

       df = n / 2π 5.1887 10³ | 2 / 0.2335³) 0.005 10⁻³

       df = n 0.649

Absolute deviations must be given with a single significant figure

        Δf = 0.7 n

b, c) The uncertainty with the width and thickness of the canteliver is associated with the density

 

In your expression there is no specific dependency so the uncertainty should be zero

The exact equation for the natural nodes is

          f = n / 2π L² √ (E e /ρA)

where A is the area of ​​the cantilever and its thickness,

In this case, they must perform the derivatives, calculate and approximate a significant figure

        Δf = | df / dL | ΔL + df /de  Δe + df /dA  ΔA

        Δf = 0.7 n + n 2π L² √(E/ρ A) | ½  1/√e | Δe

               + n / 2π L² √(Ee /ρ) | 3/2 1√A23  |

the area is

        A = b h

        A = 24.9  3.3  10⁻⁶

        A = 82.17 10⁻⁶ m²

        DA = dA /db ΔB + dA /dh Δh

        dA = h Δb + b Δh

        dA = 3.3 10⁻³ 0.005 10⁻³ + 24.9 10⁻³ 0.005 10⁻³

        dA = (3.3 + 24.9) 0.005 10⁻⁶

        dA = 1.4 10⁻⁷ m²

let's calculate each term

         A ’= n / 2π L² √a (E/ρ A) | ½ 1 /√ e | Δe

         A ’= n/ 2π L² √ (E /ρ)      | ½ 1 / (√e/√ A) |Δe

        A ’= 15.1464 10³ n ½ 1 / [√ (24.9 10⁻³)/ √ (81.17 10⁻⁶)] 0.005 10⁻³

        A '= 0.0266  n

        A ’= 2.66 10⁻² n

       A ’’ = n / 2π L² √ (E e /ρ) | 3/2  1 /√A³ |

       A ’’ = n / 2π L² √(E /ρ) √ e | 3/2  1 /√ A³ | ΔA

       A ’’ = n 15.1464 10³ 3/2 √ (24.9 10⁻³) /√ (82.17 10⁻⁶) 3 1.4 10⁻⁷

       A ’’ = n 15.1464 1.5 1.5779 / 744.85 1.4 10⁴

       A ’’ = 6,738 10²

we write the equation of uncertainty

     Δf = n (0.649 + 2.66 10⁻² + 6.738 10²)

The uncertainty due to thickness is

    Δf = 3 10⁻² n

The uncertainty regarding the area, note that this magnitude should be measured with much greater precision, specifically the height since the errors of the width are very small

     Δf = 7 10² n

 d)    Δf = 7 10² n

e) the natural frequency n = 1

       f = (15.1 ± 0.7) 10³ Hz

7 0
3 years ago
Calculate net force <br> 532N 215N
lorasvet [3.4K]

Answer:

FN is the forces acting on a body. When the body is at rest, the net force formula is given by, FNet = Fa + Fg.

Im in 7th and thats all I know so I hope it's enough

8 0
3 years ago
Other questions:
  • A student initially at rest on a frictionless frozen pond throws a 1 kg hammer in one direction. After the throw, the hammer mov
    8·1 answer
  • How does water flowing over a waterfall involve both kinetic energy and potential energy?
    6·2 answers
  • A tennis player is hitting a 58 gram tennis ball back across the net. When the racquet and the ball first make contact, the ball
    15·1 answer
  • _______ occurs when a body’s molecular wavelength sends vibrations to another body, resulting in the production of another sound
    6·2 answers
  • A lens uses what process to deflect light rays passing through it? a. reflection b. refraction c. absorption d. transparency
    8·2 answers
  • According to the law of reflection, what is the angle of incidence
    11·2 answers
  • The climber dropped her compass at the end of her 240-meter climb. How long did it take to strike bottom?
    12·2 answers
  • A quasar is a distant celestial body in space. Investigators use a special telescope and determine that a certain quasar was giv
    7·1 answer
  • ​A hose, of radius 0.018 m, is connected to a water faucet. The water pressure at the point where the hose connects to the fauce
    11·1 answer
  • What are the examples of Inertia of motion​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!