In this case, the air from the warm area will always start moving towards the colder areas because as the temperature in both lands should be equal. This is one of the laws of thermodynamics.
Answer:
300 m
Explanation:
The train accelerate from the rest so u = 0 m/sec
Final speed that is v = 80 m/sec
Time t = 30 sec
The distance traveled by first plane = 1200 m
We know the equation of motion
where s is distance a is acceleration and u is initial velocity
Using this equation for first plane 

As the acceleration is same for both the plane so a for second plane will be 2.67 
The another equation of motion is
using this equation for second plane 
s = 300 m
Answer:
1) Magnetic resonance imaging (MRI) is a test that uses powerful magnets, radio waves, and a computer to make detailed pictures of the inside of your body.
Your doctor can use this test to diagnose you or to see how well you've responded to treatment. Unlike X-rays and computed tomography (CT) scans, MRIs don’t use the damaging ionizing radiation of X-rays.
2) MRIs employ powerful magnets which produce a strong magnetic field that forces protons in the body to align with that field. When a radiofrequency current is then pulsed through the patient, the protons are stimulated, and spin out of equilibrium, straining against the pull of the magnetic field.
3) Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ligaments to tumors. MRIs are very useful for examining the brain and spinal cord.
4) The magnetic fields that change with time create loud knocking noises which may harm hearing if adequate ear protection is not used. They may also cause peripheral muscle or nerve stimulation that may feel like a twitching sensation. The radiofrequency energy used during the MRI scan could lead to heating of the body.
pls mark brainliest
It is powered by the Earth's rotation and the moon gives a little boost.
Answer:
mass- the amount of matter in an object
balance- tool used to measure mass
scale- a tool used to measure weight
weight- the downward pull on an object due to gravity