Proton positive; electron negative; neutron no charge<span>. </span>The charge<span> on the proton and </span>electron<span> are exactly the same size but opposite. The same number of protons and </span>electrons<span> exactly cancel one another in a neutral atom.
</span>
hoped it helped
Hello! :)
The focal length of the lens tells you how far away from the lens a focused image is created, if light rays approaching the lens are parallel. A lens with more “bending power” has a shorter focal length, because it alters the path of the light rays more effectively than a weaker lens. Most of the time, you can treat a lens as being thin and ignore any effects from the thickness, because the thickness of the lens is much less than the focal length. But for thicker lenses, how thick they are does make a difference, and in general, results in a shorter focal length.
Hope I helped and didn’t answer too late!
Good luck and stay COOL!
~ Destiny ^_^
Blue light will scatter more compared to red light.
Blue light has a short wavelength; red light a longer wavelength. The sky looks blue because blue light is scattered far more than red light, owing to the shorter wavelength of blue light.
<h3>What is scattering of light?</h3>
Scattering of light is the phenomenon in which light rays deviate from their original path upon striking an obstacle like dust, gas molecules or water vapors. Scattering of light gives rise to many spectacular phenomena such as Tyndall effect and the red hues that can be seen at sunrise and sunset.
<h3>What is the scattering of light with example?</h3>
Some example of scattering of light that we come across in day-to-day life are: Blue colour of the sky: Out of the seven components present in sunlight, blue colour is scattered the most by the particles present in the atmosphere and hence, the sky appears blue.
To learn more about scattering of light visit:
brainly.com/question/9922540
#SPJ4
Its called the "westerly"