(4) a metal sphere with a charge of 1.0 × 10^−9 C <span>moved through a potential difference of 4.0 V would undergo the greatest change in electrical energy from the list. </span>
Derived Units Table: The Table Shows the List of Derived Units
Quantity Formula SI Derived Unit
Force Mass x Acceleration
Work Energy Force x Displacement Power/Time Kg. m.s-2
Pressure, Stress Force/Area Kg.m-1.s-2
Current density J = I/A A.m-2
A reactant since it is on the left of the arrow
Answer:
GE = ME -
, which agrees with option C in your list.
Explanation:
The definition of Mechanical Energy (ME) of a system is the addition of the gravitational potential energy (GE) plus the kinetic energy (KE) of the system:
ME = GE + KE
Given that the KE is:
,
solving for GE in the formula above gives:
GE = ME - KE = ME -
, which agrees with option C
B. Earth’s outer surface is cooler than its interior layers.
Explanation:
- The option given above is showing us that the temperature in the interior of the earth is higher than the temperature in the outer layer.
- There is travel of heat from the inner core of the earth to the earth's crust. Due to the loss of heat when it reaches the outer layer, there arises a temperature difference.
- The heat loss is due to the absorption of heat during its transfer. Hence, option B is the answer.