The strength of the gravitational forces between two masses depends on
-- the product of the masses,
-- the distance between their centers of mass.
Answer: 888.45 K or 615.3 °c
Explanation:
According to Gay Lussacs law which states that at constant volume, pressure of an ideal gas is directly proportional to it's absolute temperature.
P/T = Constant
Therefore, P1/T1 = P2/T2
P1 = 6.7 atm
T1= 23°c = 273.15 + 23 = 296.15K
Since P2 is tripled, then,
P2 = 6.7 x 3= 20.1 atm
T2 = (20.1 x 296.15) ÷ 6.7
T2 = 888.45 K
Or in celcius 615.3°c
Correct question is;
1/0.12 = (1/0.05) + (1/d')
Answer:
d' = -1/700
Explanation:
1/0.12 = (1/0.05) + (1/d')
Let's rearrange to get;
(1/d') = (1/0.12) - (1/0.05)
(1/d') = (1/(12/100)) - (1/(5/100))
(1/d') = 100/12 - 100/5
Let's multiply through by 60 to get rid of the denominators on the right side;
> (1/d') = 500 - 1200
> (1/d') = -700
> d' = -1/700
Answer:
a) 70 N, b) b. Each initially applied a force bigger than static friction to get the box moving and accelerating, then when the desired final speed was achieved they reduced the force to make the net force zero.
Explanation:
a) A constant speed means that magnitude of friction force is equal to the magnitude of the external force. The friction force is directly proportional to the normal force, which is equal to the weight of the box. Therefore, the magnitude of the force is 70 N.
b) Alice used initially a greater force to accelerate the box up to needed speed and later reduced the external force to keep speed constant. The right choice is option b.
Answer:
Explanation:
a ) Direction of the magnetic field will be in positive x direction.
The direction of the vector E X B gives the direction of motion of wave.
b ) Magnitude of magnetic field is given by the relation
E₀ / B₀ = c , c is velocity of light
B₀ = E₀ / c
= 20 / (3 x 10⁸)
= 6.67 x 10⁻⁸ T
c ) Average power flowing per unit area by this wave is called Poynting vector
c ε₀E₀² , ε₀ = 8.85X10⁻¹²
= 3 X 10⁸ X 8.85 X 10⁻¹² X 20²
= 1.062 W m⁻²