Hello! When it comes to mark up, you would add 1 to the percentage in decimal form, because the price is going up. After you do that, you multiply that number by the original price. In this case, 37.5% is 0.375 in decimal form. 1 + 0.375 is 1.375. 80 * 1.375 is 110. There. The retail price of the shoes is $110.
Answer:
6.52 inches
Explanation:
explanation is in the image above 1,2
HOPE THIS HELPS PLEASE MARK ME BRAINIEST
Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a ratio relationship. For example, “This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of gallons of water.”How many cups of disinfectant are needed for 20 gallons of water so c is
Answer:
12fl. oz=354ml
Step-by-step explanation:
We start with the expression at the left of the equation.
We can combine the terms as:
![\begin{gathered} \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}} \\ \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D-%5Cfrac%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%20%5C%5C%20%5Cfrac%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%5Ccdot%5Cfrac%7B%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D-%5Cfrac%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%5Ccdot%5Cfrac%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%20%5C%5C%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29-%282-%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%20%5Cend%7Bgathered%7D)
We can now apply the distributive property for the both the numerator and denominator. We can see also that the denominator is the expansion of the difference of squares:
![\begin{gathered} \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2})^2-(\sqrt[]{2-\sqrt[]{3}}))^2} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})+(\sqrt[]{3}-2)\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{2^{}-(2-\sqrt[]{3})^{}} \\ \frac{\sqrt[]{2}\cdot(2+\sqrt[]{3})-\sqrt[]{2-\sqrt[]{3}}\cdot(2+\sqrt[]{3})+\sqrt[]{2}\cdot(\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}\cdot(\sqrt[]{3}-2)}{2-2+\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2+\sqrt[]{3}+\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}(-2-\sqrt[]{3}+\sqrt[]{3}-2)}{\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2\sqrt[]{3})+\sqrt[]{2-\sqrt[]{3}}(-4)}{\sqrt[]{3}} \\ 2\sqrt[]{2}-4\frac{\sqrt[]{2-\sqrt[]{3}}}{\sqrt[]{3}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29-%282-%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%29%5E2-%28%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%29%5E2%7D%20%5C%5C%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%2B%28%5Csqrt%5B%5D%7B3%7D-2%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B2%5E%7B%7D-%282-%5Csqrt%5B%5D%7B3%7D%29%5E%7B%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%5Ccdot%282%2B%5Csqrt%5B%5D%7B3%7D%29-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%5Ccdot%282%2B%5Csqrt%5B%5D%7B3%7D%29%2B%5Csqrt%5B%5D%7B2%7D%5Ccdot%28%5Csqrt%5B%5D%7B3%7D-2%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%5Ccdot%28%5Csqrt%5B%5D%7B3%7D-2%29%7D%7B2-2%2B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%282%2B%5Csqrt%5B%5D%7B3%7D%2B%5Csqrt%5B%5D%7B3%7D-2%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%28-2-%5Csqrt%5B%5D%7B3%7D%2B%5Csqrt%5B%5D%7B3%7D-2%29%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%282%5Csqrt%5B%5D%7B3%7D%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%28-4%29%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%202%5Csqrt%5B%5D%7B2%7D-4%5Cfrac%7B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5Cend%7Bgathered%7D)
We then can continue rearranging this as: